Skip to main content
Log in

First-principles study of bilayer graphene on BN/Co(111): van der Waals density functional approach

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have investigated the magnetic property of bilayer graphene adsorbed on BN/Co(111) by using the van der Waals density functional method. We found that the BN layer adjacent to the Co(111) substrate showed a buckling geometry while the BN layer next to the graphene layer became flat. According to previous results, a one-monolayer (ML) thickness of graphene on BN/Co(111) displayed a spin polarized state, but we observed that the half metallic state disappeared in bilayer graphene on BN/Co(111) while Co(111) was still half metallic as found in graphene(1ML)/BN/Co(111). We found that the surface graphene layer had a gap whereas the first interface graphene on BN/Co(111) showed an ordinary metallic state. Thus, we realized that the electronic structure of bilayer graphene grown on BN/Co(111) had been significantly altered compared with that of graphene(1ML)/BN/Co(111) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. K. Bolotin, F. Ghahari, M. Shulman, H. Stormer and P. Kim, Nature 462, 196 (2009).

    Article  ADS  Google Scholar 

  3. A. H. Castro Neto, F. Guinea, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  4. Marcella Iannuzzi and Jurg Hutter, Surf. Sci. 605, 1360 (2011).

    Article  ADS  Google Scholar 

  5. A. Lherbier, S. M. M. Dubois, X. Declerck, Y. M. Niquet, S. Roche and J. C. Charlier, Phys. Rev. B 86, 7 (2004).

    Google Scholar 

  6. K. Nagashio, T. Yamashita, T. Nishimura, K. Kita and A. Toriumi, J. Appl. Phys. 110, 024513 (2011).

    Article  ADS  Google Scholar 

  7. J. Yang, D. Kim, Jisang Hong and X. Qian, Surf. Sci. 604, 1603 (2010).

    Article  ADS  Google Scholar 

  8. M. S. Si and D. S. Xue, Phys. Rev. B 75, 193409 (2007).

    Article  ADS  Google Scholar 

  9. Oleg V. Yazyev and A. Pasquarello, Phys. Rev. B 80, 035408 (2009).

    Article  ADS  Google Scholar 

  10. M. L. Hu, Zhizhou Yu, K. W. Zhang, L. Z. Sun and J. X. Zhong, J. Phys. Chem. C 115, 8260 (2011).

    Article  Google Scholar 

  11. D. Kim, A. Hashmi and Jisnag Hong, Appl. Phys. Lett. 102, 112403 (2013).

    Article  ADS  Google Scholar 

  12. L. Liu and Z. Shen, Appl. Phys. Lett. 95, 252104 (2009).

    Article  ADS  Google Scholar 

  13. Y. Fan, M. Zhao, Z. Wang and H. Zhang, Appl. Phys. Lett. 98, 083103 (2011).

    Article  ADS  Google Scholar 

  14. Dongyoo Kim, Arqum Hashmi and Jisang Hong, Surf. Sci. 610, 27 (2013).

    Article  ADS  Google Scholar 

  15. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  16. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  17. E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev. B 24, 864 (1981).

    Article  ADS  Google Scholar 

  18. M. Weinert, E. Wimmer and A. J. Freeman, Phys. Rev. B 26, 4571 (1982).

    Article  ADS  Google Scholar 

  19. M. Weinert, J. Math. Phys. 22, 2433 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  Google Scholar 

  21. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  22. J. Klimes, D. R. Bowler and A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2010).

    Article  ADS  Google Scholar 

  23. G. Graziano, J. Klimes, F. Fernandez-Alonso and A. Michaelides, J. Phys. Condens. Matter 24, 424216 (2012).

    Article  ADS  Google Scholar 

  24. D. Le, A. Kara, E. Schroder, P. Hyldgaard and T. S. Rahman, J. Phys. Condens. Matter 24, 424210 (2012).

    Article  ADS  Google Scholar 

  25. Arqum Hashmi and Jisang Hong, J. Magn. Magn. Mater. 355, 7 (2013).

    Article  ADS  Google Scholar 

  26. Arqum Hashmi and Jisang Hong, J. Kor. Phys. Soc. 64, 900 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jisang Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmi, A., Hong, J. First-principles study of bilayer graphene on BN/Co(111): van der Waals density functional approach. Journal of the Korean Physical Society 64, 1370–1374 (2014). https://doi.org/10.3938/jkps.64.1370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1370

PACS numbers

Keywords

Navigation