Skip to main content
Log in

An event-termination cue causes perceived time to dilate

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

The perceived duration of time does not veridically reflect the physical duration but is distorted by various factors, such as the stimulus magnitude or the observer’s emotional state. Here, we showed that knowledge about an event’s termination time is another significant factor. We often experience time passage differently when we know that an event will terminate soon. To quantify this, we asked 33 university students to report a rotating clock hand’s duration with or without a termination cue that indicated the position at which the clock hand disappeared. The results showed that the presence of the termination cue dilated perceived durations, and the dilating effect was larger when the stimulus duration was longer, or the speed of the rotating stimulus was slower. A control experiment with a start-cue excluded the possibility that the cue’s mere existence caused the results. Further computational analyses based on the attention theory-of-time perception revealed that the size of dilation is best explained by neither an event’s duration nor the distance traveled by the clock hand, but by how long the clock hand spends time near the termination cue. The results imply that an event-termination cue generates a field in which the perceived time dilates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Stimuli, data, and relevant codes for the experiments have been made publicly available via the Open Science Framework and can be accessed at https://osf.io/ys7tg/. The design and analysis plans for the experiments were not preregistered.

References

  • Agrillo, C., Ranpura, A., & Butterworth, B. (2010). Time and numerosity estimation are independent: Behavioral evidence for two different systems using a conflict paradigm. Cognitive Neuroscience, 1(2), 96–101.

    Article  PubMed  Google Scholar 

  • Allan, L. G. (1979). The perception of time. Perception & Psychophysics, 26(5), 340–354.

    Article  Google Scholar 

  • Angrilli, A., Cherubini, P., Pavese, A., & Manfredini, S. (1997). The influence of affective factors on time perception. Perception & Psychophysics, 59(6), 972–982.

    Article  Google Scholar 

  • Assmus, A., Marshall, J. C., Noth, J., Zilles, K., & Fink, G. R. (2005). Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex. Neuroscience, 132(4), 923–927.

    Article  PubMed  Google Scholar 

  • Bangert, A. S., Kurby, C. A., Hughes, A. S., & Carrasco, O. (2020). Crossing event boundaries changes prospective perceptions of temporal length and proximity. Attention, Perception, & Psychophysics, 82(3), 1459–1472.

    Article  Google Scholar 

  • Birngruber, T., Schröter, H., & Ulrich, R. (2014). Duration perception of visual and auditory oddball stimuli: Does judgment task modulate the temporal oddball effect? Attention, Perception, & Psychophysics, 76(3), 814–828.

    Article  Google Scholar 

  • Block, R. A. (1992). Prospective and retrospective duration judgment: The role of information processing and memory (pp. 141–152). Springer.

    Google Scholar 

  • Block, R. A., & Gruber, R. P. (2014). Time perception, attention, and memory: A selective review. Acta psychologica, 149, 129–133.

    Article  PubMed  Google Scholar 

  • Block, R. A., & Reed, M. A. (1978). Remembered duration: Evidence for a contextual-change hypothesis. Journal of Experimental psychology: Human Learning and Memory, 4(6), 656.

    Google Scholar 

  • Block, R. A., & Zakay, D. (1997). Prospective and retrospective duration judgments: A meta-analytic review. Psychonomic Bulletin & Review, 4(2), 184–197.

    Article  Google Scholar 

  • Boltz, M. G. (1995). Effects of event structure on retrospective duration judgments. Perception & Psychophysics, 57(7), 1080–1096.

    Article  Google Scholar 

  • Brainard, D. H., & Vision, S. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.

    Article  PubMed  Google Scholar 

  • Brown, S. W. (1985). Time perception and attention: The effects of prospective versus retrospective paradigms and task demands on perceived duration. Perception & Psychophysics, 38(2), 115–124.

    Article  Google Scholar 

  • Brown, S. W. (1995). Time, change, and motion: The effects of stimulus movement on temporal perception. Perception & Psychophysics, 57, 105–116.

    Article  Google Scholar 

  • Brown, S. W. (1997). Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Perception & Psychophysics, 59(7), 1118–1140.

    Article  Google Scholar 

  • Buhusi, C. V., & Meck, W. H. (2009). Relativity theory and time perception: Single or multiple clocks? PloS One, 4(7), e6268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buonomano, D. V., & Laje, R. (2011). Population clocks: motor timing with neural dynamics. Trends in Cognitive Sciences, 14(12), 520–527.

    Article  Google Scholar 

  • Cai, M. B., Eagleman, D. M., & Ma, W. J. (2015). Perceived duration is reduced by repetition but not by high-level expectation. Journal of Vision, 15(13), 19–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai, Z. G., Wang, R., Shen, M., & Speekenbrink, M. (2018). Cross-dimensional magnitude interactions arise from memory interference. Cognitive Psychology, 106, 21–42.

    Article  PubMed  Google Scholar 

  • Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106(2), 579–593.

    Article  PubMed  Google Scholar 

  • Ceci, S. J., & Bronfenbrenner, U. (1985). Don’t forget to take the cupcakes out of the oven: Prospective memory, strategic time-monitoring, and context. Child Development, 56(1), 152–164.

    Article  PubMed  Google Scholar 

  • Chang, C. J., & Jazayeri, M. (2018). Integration of speed and time for estimating time to contact. Proceedings of the National Academy of Sciences, 115(12), E2879–E2887.

    Article  Google Scholar 

  • Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M., & Burr, D. C. (2012). Optimal encoding of interval timing in expert percussionists. Journal of Neuroscience, 32(3), 1056–1060.

    Article  PubMed  Google Scholar 

  • Coull, J. T., & Nobre, A. C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18(18), 7426–7435.

    Article  PubMed  Google Scholar 

  • Coull, J. T., & Nobre, A. C. (2008). Dissociating explicit timing from temporal expectation with fMRI. Current opinion in neurobiology, 18(2), 137–144.

    Article  PubMed  Google Scholar 

  • Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science, 303(5663), 1506–1508.

    Article  PubMed  Google Scholar 

  • Dormal, V., Seron, X., & Pesenti, M. (2006). Numerosity-duration interference: A Stroop experiment. Acta Psychologica, 121(2), 109–124.

    Article  PubMed  Google Scholar 

  • Faber, M., & Gennari, S. P. (2015). In search of lost time: Reconstructing the unfolding of events from memory. Cognition, 143, 193–202.

    Article  PubMed  Google Scholar 

  • Fortin, C., Rousseau, R., Bourque, P., & Kirouac, E. (1993). Time estimation and concurrent nontemporal processing: Specific interference from short-term-memory demands. Perception & Psychophysics, 53(5), 536–548.

    Article  Google Scholar 

  • Franssen, V., & Vandierendonck, A. (2002). Time estimation: Does the reference memory mediate the effect of knowledge of results? Acta Psychologica, 109(3), 239–267.

    Article  PubMed  Google Scholar 

  • Gibbon, J. (1977). Scalar expectancy theory and Weber's law in animal timing. Psychological Review, 84(3), 279.

    Article  Google Scholar 

  • Goldstone, S., & Lhamon, W. T. (1974). Studies of auditory-visual differences in human time judgment: 1. Sounds are judged longer than lights. Perceptual and Motor Skills, 39(1), 63–82.

    Article  PubMed  Google Scholar 

  • Harris, J. E., & Wilkins, A. J. (1982). Remembering to do things: A theoretical framework and an illustrative experiment. Human Learning, 1(2), 123–136.

    Google Scholar 

  • Herbst, S. K., Javadi, A. H., van der Meer, E., & Busch, N. A. (2013). How long depends on how fast—perceived flicker dilates subjective duration. PloS one, 8(10), e76074.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hicks, R. E., Miller, G. W., & Kinsbourne, M. (1976). Prospective and retrospective judgments of time as a function of amount of information processed. The American Journal of Psychology, 89(4), 719–730.

    Article  PubMed  Google Scholar 

  • Hollingworth, H. L. (1910). The central tendency of judgment. The Journal of Philosophy, Psychology and Scientific Methods, 7(17), 461–469.

    Article  Google Scholar 

  • Jazayeri, M., & Shadlen, M. N. (2010). Temporal context calibrates interval timing. Nature Neuroscience, 13(8), 1020–1026.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaneko, S., & Murakami, I. (2009). Perceived duration of visual motion increases with speed. Journal of Vision, 9(7), 14–14.

    Article  PubMed  Google Scholar 

  • Kliegl, K. M., Watrin, L., & Huckauf, A. (2015). Duration perception of emotional stimuli: Using evaluative conditioning to avoid sensory confounds. Cognition and Emotion, 29(8), 1350–1367.

    Article  PubMed  Google Scholar 

  • Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247.

    Article  PubMed  Google Scholar 

  • Kwon, O. S., & Knill, D. C. (2013). The brain uses adaptive internal models of scene statistics for sensorimotor estimation and planning. Proceedings of the National Academy of Sciences, 110(11), E1064–E1073.

    Article  Google Scholar 

  • Lejeune, H., & Wearden, J. H. (2009). Vierordt's The Experimental Study of the Time Sense (1868) and its legacy. European Journal of Cognitive Psychology, 21(6), 941–960.

    Article  Google Scholar 

  • Lhamon, W. T., & Goldstone, S. (1975). Movement and the judged duration of visual targets. Bulletin of the Psychonomic Society, 5(1), 53–54.

    Article  Google Scholar 

  • Li, Y., Mo, L., & Chen, Q. (2015). Differential contribution of velocity and distance to time estimation during self-initiated time-to-collision judgment. Neuropsychologia, 73, 35–47.

    Article  PubMed  Google Scholar 

  • Makin, A. D., Poliakoff, E., Dillon, J., Perrin, A., Mullet, T., & Jones, L. A. (2012). The interaction between duration, velocity and repetitive auditory stimulation. Acta Psychologica, 139(3), 524–531.

    Article  PubMed  Google Scholar 

  • Mattes, S., & Ulrich, R. (1998). Directed attention prolongs the perceived duration of a brief stimulus. Perception & Psychophysics, 60, 1305–1317.

    Article  Google Scholar 

  • Matthews, W. J., & Meck, W. H. (2016). Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychological Bulletin, 142(8), 865.

    Article  PubMed  Google Scholar 

  • Mioni, G., Stablum, F., Prunetti, E., & Grondin, S. (2016). Time perception in anxious and depressed patients: A comparison between time reproduction and time production tasks. Journal of Affective Disorders, 196, 154–163.

    Article  PubMed  Google Scholar 

  • Miyazaki, M., Nozaki, D., & Nakajima, Y. (2005). Testing Bayesian models of human coincidence timing. Journal of Neurophysiology, 94(1), 395–399.

    Article  PubMed  Google Scholar 

  • Moon, J., Choe, S., Lee, S., & Kwon, O. S. (2019). Temporal dynamics of visual attention allocation. Scientific Reports, 9(1), 1–11.

    Article  Google Scholar 

  • Nobre, A. C., & Van Ede, F. (2018). Anticipated moments: Temporal structure in attention. Nature Reviews Neuroscience, 19(1), 34–48.

    Article  PubMed  Google Scholar 

  • Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., Chillemi, G., & Caltagirone, C. (2008). Perceiving numbers alters time perception. Neuroscience Letters, 438(3), 308–311.

    Article  PubMed  Google Scholar 

  • Ono, F., & Kawahara, J. I. (2007). The subjective size of visual stimuli affects the perceived duration of their presentation. Perception & Psychophysics, 69(6), 952–957.

    Article  Google Scholar 

  • Pariyadath, V., & Eagleman, D. (2007). The effect of predictability on subjective duration. PloS One, 2(11), e1264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelli, D. G., & Vision, S. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.

    Article  PubMed  Google Scholar 

  • Petzschner, F. H., & Glasauer, S. (2011). Iterative Bayesian estimation as an explanation for range and regression effects: A study on human path integration. Journal of Neuroscience, 31(47), 17220–17229.

    Article  PubMed  Google Scholar 

  • Polti, I., Martin, B., & van Wassenhove, V. (2018). The effect of attention and working memory on the estimation of elapsed time. Scientific Reports, 8(1), 1–11.

    Article  Google Scholar 

  • Rohenkohl, G., Gould, I. C., Pessoa, J., & Nobre, A. C. (2014). Combining spatial and temporal expectations to improve visual perception. Journal of Vision, 14(4), 8–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roseboom, W., Fountas, Z., Nikiforou, K., Bhowmik, D., Shanahan, M., & Seth, A. K. (2019). Activity in perceptual classification networks as a basis for human subjective time perception. Nature Communications, 10(1), 267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawyer, T. F., Meyers, P. J., & Huser, S. J. (1994). Contrasting task demands alter the perceived duration of brief time intervals. Percept Psychophys, 56(6), 649–57.

    Article  PubMed  Google Scholar 

  • Schirmer, A. (2011). How emotions change time. Frontiers in Integrative Neuroscience, 5, 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stetson, C., Fiesta, M. P., & Eagleman, D. M. (2007). Does time really slow down during a frightening event? PloS One, 2(12), e1295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tipples, J. (2008). Negative emotionality influences the effects of emotion on time perception. Emotion, 8(1), 127.

    Article  PubMed  Google Scholar 

  • Tsao, A., Yousefzadeh, S. A., Meck, W. H., Moser, M. B., Moser, E. I. (2022). The neural bases for timing of durations. Nature Reviews Neuroscience, 1-20.

  • Tse, P. U., Intriligator, J., Rivest, J., & Cavanagh, P. (2004). Attention and the subjective expansion of time. Perception & Psychophysics, 66(7), 1171–1189.

    Article  Google Scholar 

  • Ulrich, R., Nitschke, J., & Rammsayer, T. (2006). Perceived duration of expected and unexpected stimuli. Psychological Research, 70(2), 77–87.

    Article  PubMed  Google Scholar 

  • Vierordt, K. (1868). Der zeitsinn nach versuchen. H. Laupp.

    Google Scholar 

  • Wearden, J. H., Todd, N. P. M., & Jones, L. A. (2006). When do auditory/visual differences in duration judgements occur? Quarterly Journal of Experimental Psychology, 59(10), 1709–1724.

    Article  Google Scholar 

  • Witherspoon, D., & Allan, L. G. (1985). The effect of a prior presentation on temporal judgments in a perceptual identification task. Memory & Cognition, 13(2), 101–111.

    Article  Google Scholar 

  • Wittmann, M. (2013). The inner sense of time: How the brain creates a representation of duration. Nature Reviews Neuroscience, 14(3), 217–223.

    Article  PubMed  Google Scholar 

  • Xuan, B., Zhang, D., He, S., & Chen, X. (2007). Larger stimuli are judged to last longer. Journal of Vision, 7(10), 2–2.

    Article  Google Scholar 

  • Zakay, D. (1993). Time estimation methods—Do they influence prospective duration estimates? Perception, 22(1), 91–101.

    Article  PubMed  Google Scholar 

  • Zakay, D., & Block, R. A. (1995). An attentional-gate model of prospective time estimation. Time and the Dynamic Control of Behavior, 5, 167–178.

    Google Scholar 

  • Zakay, D., & Block, R. A. (1996). The role of attention in time estimation processes. Advances in psychology (115th ed., pp. 143–164). North-Holland.

    Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF-2018R1A2B6008959 and NRF-2023R1A2C1007917). The authors have no conflicts of interest to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and O.-S.K. designed research, performed research, analyzed data, and wrote the paper.

Corresponding author

Correspondence to Oh-Sang Kwon.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 475 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choe, S., Kwon, OS. An event-termination cue causes perceived time to dilate. Psychon Bull Rev (2023). https://doi.org/10.3758/s13423-023-02368-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.3758/s13423-023-02368-1

Keywords

Navigation