Skip to main content
Log in

The addition of a spatial auditory cue improves spatial updating in a virtual reality navigation task

  • Short Report
  • Published:
Attention, Perception, & Psychophysics Aims and scope Submit manuscript

Abstract

Auditory cues are integrated with vision and body-based self-motion cues for motion perception, balance, and gait, though limited research has evaluated their effectiveness for navigation. Here, we tested whether an auditory cue co-localized with a visual target could improve spatial updating in a virtual reality homing task. Participants navigated a triangular homing task with and without an easily localizable spatial audio signal co-located with the home location. The main outcome was unsigned angular error, defined as the absolute value of the difference between the participant’s turning response and the correct response towards the home location. Angular error was significantly reduced in the presence of spatial sound compared to a head-fixed identical auditory signal. Participants’ angular error was 22.79° in the presence of spatial audio and 30.09° in its absence. Those with the worst performance in the absence of spatial sound demonstrated the greatest improvement with the added sound cue. These results suggest that auditory cues may benefit navigation, particularly for those who demonstrated the highest level of spatial updating error in the absence of spatial sound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This paper was the most relevant example of a single localizable cue influencing turning during gait when the study was designed.

  2. ICC was calculated using a null/intercept only model.

  3. Significance values were determined using a likelihood ratio test, all models successfully converged

References

  • Anderson, P. W., & Zahorik, P. (2014). Auditory/visual distance estimation: Accuracy and variability. Frontiers in Psychology, 5, 1097.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barhorst-Cates, E. M., Stoker, J., Stefanucci, J. K., & Creem-Regehr, S. H. (2021). Using virtual reality to assess dynamic self-motion and landmark cues for spatial updating in children and adults. Memory & Cognition, 49(3), 572–585.

    Article  Google Scholar 

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

  • Chen, X., McNamara, T. P., Kelly, J. W., & Wolbers, T. (2017). Cue combination in human spatial navigation [Publisher: Elsevier Inc.]. Cognitive Psychology, 95, 105–144. https://doi.org/10.1016/j.cogpsych.2017.04.003

    Article  PubMed  Google Scholar 

  • Clemenson, G. D., Maselli, A., Fiannaca, A. J., Miller, A., & Gonzalez-Franco, M. (2021). Rethinking GPS navigation: Creating cognitive maps through auditory clues. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-87148-4

    Article  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. https://doi.org/10.3758/BF03193146

    Article  PubMed  Google Scholar 

  • Grantham, D. W., Hornsby, B. W. Y., & Erpenbeck, E. A. (2003). Auditory spatial resolution in horizontal, vertical, and diagonal planes. The Journal of the Acoustical Society of America, 114(2), 1009–1022. https://doi.org/10.1121/1.1590970

    Article  PubMed  Google Scholar 

  • Gröhn, M., Lokki, T., & Takala, T. (2005). Comparison of auditory, visual, and audiovisual navigation in a 3d space. ACM Transactions on Applied Perception (TAP), 2(4), 564–570.

    Article  Google Scholar 

  • Hamacher, D., Schley, F., Hollander, K., & Zech, A. (2018). Effects of manipulated auditory information on local dynamic gait stability. Human Movement Science, 58(March), 219–223. https://doi.org/10.1016/j.humov.2018.02.010

    Article  PubMed  Google Scholar 

  • Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. The Cambridge handbook of visuospatial thinking, 121–169.

  • Kaipust, J. P., McGrath, D., Mukherjee, M., & Stergiou, N. (2013). Gait variability is altered in older adults when listening to auditory stimuli with differing temporal structures. Annals of Biomedical Engineering, 41(8), 1595–1603. https://doi.org/10.1007/s10439-012-0654-9

    Article  PubMed  Google Scholar 

  • Karim, A., Rumalla, K., King, L., & Hullar, T. E. (2017). The effect of spatial auditory landmarks on ambulation. Gait and Posture, 60, 171–174. https://doi.org/10.1016/j.gaitpost.2017.12.003

    Article  PubMed  Google Scholar 

  • Karimpur, H., & Hamburger, K. (2016). Multimodal integration of spatial information: The influence of object-related factors and self-reported strategies. Frontiers in Psychology, 7, 1443.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klatzky, R. L., Marston, J. R., Giudice, N. A., Golledge, R. G., & Loomis, J. M. (2006). Cognitive load of navigating without vision when guided by virtual sound versus spatial language. Journal of experimental psychology: Applied, 12(4), 223.

    PubMed  Google Scholar 

  • Kolarik, A. J., Moore, B. C., Zahorik, P., Cirstea, S., & Pardhan, S. (2016). Auditory distance perception in humans: A review of cues, development, neuronal bases, and effects of sensory loss. Attention, Perception, & Psychophysics, 78(2), 373–395.

    Article  Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13

  • Long, R. G., & Giudice, N. A. (2010). Establishing and maintaining orientation for mobility. In B. Blasch, W. Wiener, & R. Welch (Eds.), Foundations of orientation and mobility (pp. 45–62). New York: American Foundation for the Blind.

    Google Scholar 

  • Loomis, J. M., Golledge, R. G., & Klatzky, R. L. (1998). Navigation system for the blind: Auditory display modes and guidance. Presence, 7(2), 193–203.

    Article  Google Scholar 

  • Loomis, J. M., Klatzky, R. L., Philbeck, J. W., & Golledge, R. G. (1998). Assessing auditory distance perception using perceptually directed action. Perception & Psychophysics, 60(6), 966–980.

    Article  Google Scholar 

  • Loomis, J. M., Lippa, Y., Klatzky, R. L., & Golledge, R. G. (2002). Spatial updating of locations specified by 3-d sound and spatial language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(2), 335.

    PubMed  Google Scholar 

  • Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139

  • Maheu, M., Sharp, A., Landry, S. P., & Champoux, F. (2017). Sensory reweighting after loss of auditory cues in healthy adults. Gait and Posture, 53, 151–154. https://doi.org/10.1016/j.gaitpost.2017.01.015

    Article  PubMed  Google Scholar 

  • Marme-Karelse, A. M., & Bles, W. (1977). Circular vection and human posture, II. Does the auditory system play a role? Agressologie: revue internationale de physio-biologie et de pharmacologie appliquées aux effets de l’agression, 18(6), 329–33. http://www.ncbi.nlm.nih.gov/pubmed/613848

  • Newcombe, N. S., Hegarty, M., & Uttal, D. (2023). Building a cognitive science of human variation: Individual differences in spatial navigation.

  • Padilla, L. M., Creem-Regehr, S. H., Stefanucci, J. K., & Cashdan, E. A. (2017). Sex differences in virtual navigation influenced by scale and navigation experience. Psychonomic Bulletin & Review, 24, 582–590.

    Article  Google Scholar 

  • R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

  • Seiwerth, I., Jonen, J., Rahne, T., Schwesig, R., Lauenroth, A., Hullar, T. E., & Plontke, S. K. (2018). Influence of hearing on vestibulospinal control in healthy subjects. Hno, 66, 49–55. https://doi.org/10.1007/s00106-018-0520-7

    Article  PubMed  Google Scholar 

  • Shaw, M., Rights, J. D., Sterba, S. S., & Flake, J. K. (2023). R2mlm: An r package calculating r-squared measures for multilevel models. Behavior Research Methods, 55(4), 1942–1964.

    Article  PubMed  Google Scholar 

  • Shayman, C. S., Earhart, G. M., & Hullar, T. E. (2017). Improvements in gait with hearing aids and cochlear implants. Otology & Neurotology, 38(4), 484–486. https://doi.org/10.1097/MAO.0000000000001360

  • Shayman, C. S., Peterka, R. J., Gallun, F. J., Oh, Y., Chang, N.-Y.N., & Hullar, T. E. (2020). Frequency-dependent integration of auditory and vestibular cues for self-motion perception. Journal of Neurophysiology, 123(3), 936–944. https://doi.org/10.1152/jn.00307.2019

  • Stevens, M. N., Barbour, D. L., Gronski, M. P., & Hullar, T. E. (2017). Auditory contributions to maintaining balance. Journal of Vestibular Research, 26(5–6), 433–438. https://doi.org/10.3233/VES-160599

    Article  Google Scholar 

  • Weaver, T. S., Shayman, C. S., & Hullar, T. E. (2017). The Effect of Hearing Aids and Cochlear Implants on Balance During Gait. Otology & Neurotology, 38(9), 1327–1332. https://doi.org/10.1097/MAO.0000000000001551

    Article  Google Scholar 

  • Werkhoven, P., van Erp, J. B., & Philippi, T. G. (2014). Navigating virtual mazes: The benefits of audiovisual landmarks. Displays, 35(3), 110–117.

    Article  Google Scholar 

  • Zanchi, S., Cuturi, L. F., Sandini, G., & Gori, M. (2022). Interindividual differences influence multisensory processing during spatial navigation. Journal of Experimental Psychology: Human Perception and Performance, 48(2), 174–189. https://doi.org/10.1037/xhp0000973

    Article  PubMed  Google Scholar 

  • Zarei, H., Norasteh, A. A., & King, L. (2022). The effect of auditory cues on static postural control: A systematic review and meta-analysis. Audiology and Neurotology, 27(6), 427–436.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey S. Shayman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the National Institute On Deafness And Other Communication Disorders under Award Number 1F30DC021360-01 (Shayman), and by the American Otological Society in the form of a Fellowship Grant (Shayman). The authors would like to thank Jessica Stoker for her help with data collection and Munzer Abusham for his help with virtual environment development. The data and analysis script for this study are available on Open Science Framework.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayman, C.S., Whitaker, M.M., Barhorst-Cates, E. et al. The addition of a spatial auditory cue improves spatial updating in a virtual reality navigation task. Atten Percept Psychophys (2024). https://doi.org/10.3758/s13414-024-02890-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.3758/s13414-024-02890-x

Keywords

Navigation