Skip to main content
Log in

Investigating the role of spatial filtering on distractor suppression

  • Registered Reports and Replications
  • Published:
Attention, Perception, & Psychophysics Aims and scope Submit manuscript

Abstract

In recent years, evidence has accumulated towards a distractor suppression mechanism that enables efficient selection of targets in a visual search task. According to these findings, the search for a target is faster in the presence of a salient distractor in a display among homogenous distractors as opposed to its absence. Studies have also shown that distractor suppression not only operates on the feature level but can also be spatially guided. The motivation of the current study was to examine if spatially guided distractor suppression can be goal-driven. We tested this across four experiments. In Experiment 1A, the task was to search for a shape target (e.g., a circle) and discriminate the orientation of the line within it. In some trials, a salient color distractor was presented in the display while participants were told that it appeared in one of the two locations on the horizontal axis (or the vertical axis, counterbalanced across participants). We expected enhanced distractor suppression when the salient distractor appeared within this “spatial filter” but did not find it since the target was also presented at the filtered locations. Experiment 1B replicated Experiment 1A, except that the target was always presented outside the filter; filtering enhanced search performance. In Experiment 2 even when the filter contained the salient distractor in only 65% of the filtered trials, filtering benefited search performance. In Experiment 3, the filter changed on every trial and did not benefit suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The raw data files are available via the Open Science Framework at: https://osf.io/8f6dz/?view_only=e0cef1215eb9483ca9f62a043844cb90

Code availability

All codes used for analysis are available via the Open Science Framework at: https://osf.io/8f6dz/?view_only=e0cef1215eb9483ca9f62a043844cb90.

References

  • Anderson, B. A. (2016). The attention habit: How reward learning shapes attentional selection. Annals of the New York Academy of Sciences, 1369(1), 24–39.

    Article  PubMed  Google Scholar 

  • Anderson, B. A., & Kim, A. J. (2020). Selection history-driven signal suppression. Visual Cognition, 28(2), 112–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 580–584. https://doi.org/10.1037/a0027885

    Article  PubMed  Google Scholar 

  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496.

    Article  Google Scholar 

  • Belopolsky, A. V. (2015). Common priority map for selection history, reward and emotion in the oculomotor system. Perception, 44(8-9), 920–933.

    Article  PubMed  Google Scholar 

  • Blakley, E. C., Gaspelin, N., & Gerhardstein, P. (2022). The development of oculomotor suppression of salient distractors in children. Journal of Experimental Child Psychology, 214, 105291.

    Article  PubMed  Google Scholar 

  • Bogaerts, L., van Moorselaar, D., & Theeuwes, J. (2022). Does it help to expect distraction? Attentional capture is attenuated by high distractor frequency but not by trial-to-trial predictability. Journal of Experimental Psychology: Human Perception and Performance, 48(3), 246.

    PubMed  Google Scholar 

  • Britton, M. K., & Anderson, B. A. (2020). Specificity and persistence of statistical learning in distractor suppression. Journal of Experimental Psychology: Human Perception and Performance, 46(3), 324.

    PubMed  Google Scholar 

  • Burnham, B. R. (2018). Selectively ignoring locations does not modulate contingent involuntary orienting, but selectively attending does. Visual Cognition, 26(1), 48–70.

  • Caputo, G., & Guerra, S. (1998). Attentional selection by distractor suppression. Vision Research, 38(5), 669–689.

    Article  PubMed  Google Scholar 

  • Carlisle, N. B., & Nitka, A. W. (2019). Location-based explanations do not account for active attentional suppression. Visual Cognition, 27(3-4), 305–316.

    Article  Google Scholar 

  • Chun, M. M., & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17(2), 177–184.

    Article  PubMed  Google Scholar 

  • De Tommaso, M., & Turatto, M. (2019). Learning to ignore salient distractors: Attentional set and habituation. Visual Cognition, 27(3-4), 214–226.

    Article  Google Scholar 

  • Duncan, D., & Theeuwes, J. (2020). Statistical learning in the absence of explicit top-down attention. Cortex, 131, 54–65.

    Article  PubMed  Google Scholar 

  • Egeth, H. E., Virzi, R. A., & Garbart, H. (1984). Searching for conjunctively defined targets. Journal of Experimental Psychology: Human Perception and Performance, 10(1), 32.

    PubMed  Google Scholar 

  • Failing, M., & Theeuwes, J. (2020). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 27(1), 86–95.

    Article  Google Scholar 

  • Failing, M., Wang, B., & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention, Perception, & Psychophysics, 81(5), 1405–1414.

    Article  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  PubMed  Google Scholar 

  • Ferrante, O., Santandrea, E., & Chelazzi, L. (2018). Compound statistical learning of target selection and distractor suppression. Journal of Vision, 18(10), 284–284.

    Article  Google Scholar 

  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030.

    PubMed  Google Scholar 

  • Gao, Y., & Theeuwes, J. (2020). Independent effects of statistical learning and top-down attention. Attention, Perception, & Psychophysics, 82(8), 3895–3906.

    Article  Google Scholar 

  • Gao, Y., & Theeuwes, J. (2022). Learning to suppress a location does not depend on knowing which location. Attention, Perception, & Psychophysics, 84(4), 1087–1097.

  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740–1750.

    Article  PubMed  Google Scholar 

  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79(1), 45–62.

    Article  Google Scholar 

  • Gong, D., & Theeuwes, J. (2021). A saliency-specific and dimension-independent mechanism of distractor suppression. Attention, Perception, & Psychophysics, 83(1), 292–307.

    Article  Google Scholar 

  • Gottlieb, J. (2012). Attention, learning, and the value of information. Neuron, 76(2), 281–295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamblin-Frohman, Z., & Becker, S. I. (2022). Inhibition continues to guide search under concurrent visual working memory load. Journal of Vision, 22(2), 8–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Humphreys, G. W., & Muller, H. J. (1993). SEarch via recursive rejection (SERR): A connectionist model of visual search. Cognitive Psychology, 25(1), 43–110.

    Article  Google Scholar 

  • Huynh Cong, S., & Kerzel, D. (2020). New templates interfere with existing templates depending on their respective priority in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 46(11), 1313–1327.

    PubMed  Google Scholar 

  • Huynh Cong, S., & Kerzel, D. (2021). Allocation of resources in working memory: Theoretical and empirical implications for visual search. Psychonomic Bulletin & Review, 28, 1093–1111.

    Article  Google Scholar 

  • Ishigami, Y., Klein, R. M., & Christie, J. (2009). Exploring the modulation of attentional capture by attentional control settings using performance and illusory line motion. Visual Cognition, 17(3), 431–456.

    Article  Google Scholar 

  • Kerzel, D., & Cong, S. H. (2021). Statistical regularities cause attentional suppression with target-matching distractors. Attention, Perception, & Psychophysics, 83(1), 270–282.

    Article  Google Scholar 

  • Lawrence, R. K., & Pratt, J. (2022). Salience matters: Distractors may, or may not, speed target-absent searches. Attention, Perception, & Psychophysics, 84(1), 89–100.

    Article  Google Scholar 

  • Leber, A. B., Gwinn, R. E., Hong, Y., & O’Toole, R. J. (2016). Implicitly learned suppression of irrelevant spatial locations. Psychonomic Bulletin & Review, 23(6), 1873–1881.

    Article  Google Scholar 

  • Luck, S. J., Gaspelin, N., Folk, C. L., Remington, R. W., & Theeuwes, J. (2021). Progress toward resolving the attentional capture debate. Visual Cognition, 29(1), 1–21.

    Article  PubMed  Google Scholar 

  • Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noonan, M. P., Adamian, N., Pike, A., Printzlau, F., Crittenden, B. M., & Stokes, M. G. (2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36(6), 1797–1807.

  • Pomplun, M., Reingold, E. M., & Shen, J. (2003). Area activation: A computational model of saccadic selectivity in visual search. Cognitive Science, 27(2), 299–312.

    Article  Google Scholar 

  • Prasad, S. G., Mishra, R. K., & Klein, R. M. (2021). Re-examining attention capture at irrelevant (ignored?) locations. Journal of Experimental Psychology: General, 150(12), e57.

    Article  PubMed  Google Scholar 

  • Ruthruff, E., & Gaspelin, N. (2018). Immunity to attentional capture at ignored locations. Attention, Perception, & Psychophysics, 80(2), 325–336.

    Article  Google Scholar 

  • Stilwell, B. T., & Vecera, S. P. (2022). Testing the underlying processes leading to learned distractor rejection: Learned oculomotor avoidance. Attention, Perception, & Psychophysics, 84(6), 1964–1981.

    Article  Google Scholar 

  • Stilwell, B. T., & Vecera, S. P. (2023). Learned distractor rejection persists across target search in a different dimension. Attention, Perception, & Psychophysics, 85(3), 785–795.

    Article  Google Scholar 

  • Stilwell, B. T., Egeth, H., & Gaspelin, N. (2022). Electrophysiological evidence for the suppression of highly salient distractors. Journal of Cognitive Neuroscience, 34(5), 787–805.

    Article  PubMed  Google Scholar 

  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606.

    Article  Google Scholar 

  • Theeuwes, J., Kramer, A. F., & Atchley, P. (2001). Spatial attention in early vision. Acta Psychologica, 108(1), 1–20.

    Article  PubMed  Google Scholar 

  • Van Moorselaar, D., & Slagter, H. A. (2020). Inhibition in selective attention. Annals of the New York Academy of Sciences, 1464(1), 204–221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Moorselaar, D., Daneshtalab, N., & Slagter, H. A. (2021). Neural mechanisms underlying distractor inhibition on the basis of feature and/or spatial expectations. Cortex, 137, 232–250.

    Article  PubMed  Google Scholar 

  • Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19, 871–878.

    Article  Google Scholar 

  • Vicente-Conesa, F., Giménez-Fernández, T., Luque, D., & Vadillo, M. A. (2023). Learning to suppress a distractor may not be unconscious. Attention, Perception, & Psychophysics, 85(3), 796–813.

    Article  Google Scholar 

  • Wang, B., & Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13.

    PubMed  Google Scholar 

  • Wang, B., & Theeuwes, J. (2018b). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4), 860–870.

    Article  Google Scholar 

  • Wang, B., van Driel, J., Ort, E., & Theeuwes, J. (2019). Anticipatory distractor suppression elicited by statistical regularities in visual search. Journal of Cognitive Neuroscience, 31(10), 1535–1548.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M. (2021). Guided search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28(4), 1060–1092.

    Article  Google Scholar 

  • Won, B. Y., Kosoyan, M., & Geng, J. J. (2019). Evidence for second-order singleton suppression based on probabilistic expectations. Journal of Experimental Psychology: Human Perception and Performance, 45(1), 125.

    PubMed  Google Scholar 

  • Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 121.

    PubMed  Google Scholar 

Download references

Open practices statement

The data and materials for all experiments are made available on the Open Science Framework.

Funding

This research was supported by an Institute of Excellence grant to RKM. SP was supported by an Alexander von Humboldt postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaishnavi Mohite.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The methodology of this study was approved by the Institutional Ethics Committee of the University of Hyderabad.

Consent to participate

All participants in this study provided informed consent before the administration of experiments.

Consent for publication

All participants will be asked to sign a consent to publication form prescribed by the journal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohite, V., Prasad, S. & Mishra, R.K. Investigating the role of spatial filtering on distractor suppression. Atten Percept Psychophys (2023). https://doi.org/10.3758/s13414-023-02831-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.3758/s13414-023-02831-0

Keywords

Navigation