Skip to main content
Log in

Effects of spatial response coding on distractor processing: Evidence from auditory spatial negative priming tasks with keypress, joystick, and head movement responses

  • Published:
Attention, Perception, & Psychophysics Aims and scope Submit manuscript

Abstract

Prior studies of spatial negative priming indicate that distractor-assigned keypress responses are inhibited as part of visual, but not auditory, processing. However, recent evidence suggests that static keypress responses are not directly activated by spatially presented sounds and, therefore, might not call for an inhibitory process. In order to investigate the role of response inhibition in auditory processing, we used spatially directed responses that have been shown to result in direct response activation to irrelevant sounds. Participants localized a target sound by performing manual joystick responses (Experiment 1) or head movements (Experiment 2B) while ignoring a concurrent distractor sound. Relations between prime distractor and probe target were systematically manipulated (repeated vs. changed) with respect to identity and location. Experiment 2A investigated the influence of distractor sounds on spatial parameters of head movements toward target locations and showed that distractor-assigned responses are immediately inhibited to prevent false responding in the ongoing trial. Interestingly, performance in Experiments 1 and 2B was not generally impaired when the probe target appeared at the location of the former prime distractor and required a previously withheld and presumably inhibited response. Instead, performance was impaired only when prime distractor and probe target mismatched in terms of location or identity, which fully conforms to the feature-mismatching hypothesis. Together, the results suggest that response inhibition operates in auditory processing when response activation is provided but is presumably too short-lived to affect responding on the subsequent trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. All parameters (i.e., the radius of the virtual circle as well as the size and the boundaries of the response segments) were determined on the basis of extensive prior testing to optimize the measurement of joystick responses and, to anticipate, head movement responses in Experiment 2. But note that the choice of parameters has an effect on the overall performance level. For example, the critical response radius of the virtual circle in Experiment 1 was set to 400 pixels. Had we used a larger radius as the response criterion, response times would have been longer because the response criterion would have been reached later. Similarly, global error rates are influenced by the size and the boundaries of the segments that define valid responses for each speaker, with narrower segments leading to increased error rates. But note that absolute keypress latencies are similarly influenced by arbitrary properties of the measurement device, such as the force necessary to trigger a keystroke. While absolute response times and error rates can be compared neither between keypress and joystick responses (Experiment 1) nor between keypress responses and head movements (Experiment 2), it is possible to compare the overall pattern of results between the response mode groups, which is diagnostic for the underlying processes.

References

  • Arnott, S. R., & Alain, C. (2011). The auditory dorsal pathway: Orienting vision. Neuroscience and Biobehavioral Reviews, 35(10), 2162–2173. doi:10.1016/j.neubiorev.2011.04.005

    Article  PubMed  Google Scholar 

  • Barfield, W., Cohen, M., & Rosenberg, C. (1997). Visual and auditory localization as a function of azimuth and elevation. The International Journal of Aviation Psychology, 7(2), 123–138. doi:10.1207/s15327108ijap0702_2

    Article  Google Scholar 

  • Buckolz, E., Avramidis, C., & Fitzgeorge, L. (2008). Prime-trial processing demands and their impact on distractor processing in a spatial negative priming task. Psychological Research, 72(3), 235–248. doi:10.1007/s00426-007-0107-5

    Article  PubMed  Google Scholar 

  • Buckolz, E., Edgar, C., Kajaste, B., Lok, M., & Khan, M. (2012a). Inhibited prime-trial distractor responses solely produce the visual spatial negative priming effect. Attention, Perception, & Psychophysics, 74(8), 1632–1643. doi:10.3758/s13414-012-0366-0

    Article  Google Scholar 

  • Buckolz, E., Fitzgeorge, L., & Knowles, S. (2012b). Spatial negative priming, but not inhibition of return, with central (foveal) displays. Psychology, 3(9), 666–674. doi:10.4236/psych.2012.39101

    Article  Google Scholar 

  • Buckolz, E., Goldfarb, A., & Khan, M. (2004). The use of a distractor-assigned response slows later responding in a location negative priming task. Perception & Psychophysics, 66(5), 837–845. doi:10.3758/BF03194977

    Article  Google Scholar 

  • Buckolz, E., O'Donnell, C., & McAuliffe, J. (1996). The Simon effect: Evidence of a response processing “functional locus”. Human Movement Science, 15(4), 543–564. doi:10.1016/0167-9457(96)00021-8

    Article  Google Scholar 

  • Buetti, S., & Kerzel, D. (2008). Time course of the Simon effect in pointing movements for horizontal, vertical, and acoustic stimuli: Evidence for a common mechanism. Acta Psychologica, 129(3), 420–428. doi:10.1016/j.actpsy.2008.09.007

    Article  PubMed  Google Scholar 

  • Burle, B., Possamaï, C.-A., Vidal, F., Bonnet, M., & Hasbroucq, T. (2002). Executive control in the Simon effect: An electromyographic and distributional analysis. Psychological Research, 66(4), 324–336. doi:10.1007/s00426-002-0105-6

    Article  PubMed  Google Scholar 

  • Chao, H.-F. (2009). Revisiting the role of probe distractors in negative priming: Location negative priming is observed when probe distractors are consistently absent. Attention, Perception, & Psychophysics, 71(5), 1072–1082. doi:10.3758/APP.71.5.1072

    Article  Google Scholar 

  • Clifton, R. K. (1992). The development of spatial hearing in human infants. In L. Werner & E. Rubel (Eds.), Developmental psychoacoustics (pp. 135–157). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.): Hillsdale, NJ: Erlbaum.

  • Coles, M. G. H., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). A psychophysiological investigation of the continuous flow model of human information processing. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 529–553. doi:10.1037/0096-1523.11.5.529

    PubMed  Google Scholar 

  • Corneil, B. D., & Munoz, D. P. (1996). The influence of auditory and visual distractors on human orienting gaze shifts. The Journal of Neuroscience, 16(24), 8193–8207.

    PubMed  Google Scholar 

  • Crammond, D. J., & Kalaska, J. F. (1994). Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. Journal of Neurophysiology, 71(3), 1281–1284.

    PubMed  Google Scholar 

  • De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 731–750. doi:10.1037/0096-1523.20.4.731

    PubMed  Google Scholar 

  • De Jong, R., Wierda, M., Mulder, G., & Mulder, L. J. (1988). Use of partial stimulus information in response processing. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 682–692. doi:10.1037/0096-1523.14.4.682

    PubMed  Google Scholar 

  • Dittrich, K., Rothe, A., & Klauer, K. C. (2012). Increased spatial salience in the social Simon task: A response-coding account of spatial compatibility effects. Attention, Perception, & Psychophysics, 74(5), 911–929. doi:10.3758/s13414-012-0304-1

    Article  Google Scholar 

  • Dyson, B. J., & Ishfaq, F. (2008). Auditory memory can be object based. Psychonomic Bulletin & Review, 15(2), 409–412. doi:10.3758/PBR.15.2.409

    Article  Google Scholar 

  • Eimer, M. (1999). Facilitatory and inhibitory effects of masked prime stimuli on motor activation and behavioural performance. Acta Psychologica, 101(2–3), 293–313. doi:10.1016/S0001-6918(99)00009-8

    Article  PubMed  Google Scholar 

  • Eimer, M., & Schlaghecken, F. (2003). Response facilitation and inhibition in subliminal priming. Biological Psychology, 64(1–2), 7–26. doi:10.1016/S0301-0511(03)00100-5

    Article  PubMed  Google Scholar 

  • Eimer, M., Schubö, A., & Schlaghecken, F. (2002). Locus of inhibition in the masked priming of response alternatives. Journal of Motor Behavior, 34(1), 3–10. doi:10.1080/00222890209601926

    Article  PubMed  Google Scholar 

  • Eriksen, C. W., Coles, M. G., Morris, L. R., & O'Hara, W. P. (1985). An electromyographic examination of response competition. Bulletin of the Psychonomic Society, 23(3), 165–168.

    Article  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi:10.3758/BF03193146

    Article  PubMed  Google Scholar 

  • Fitts, P. M., & Seeger, C. M. (1953). S-R compatibility: spatial characteristics of stimulus and response codes. Journal of Experimental Psychology, 46(3), 199–210. doi:10.1037/h0062827

    Article  PubMed  Google Scholar 

  • Fitzgeorge, L., & Buckolz, E. (2008). Spatial negative priming modulation: The influence of probe-trial target cueing, distractor presence, and an intervening response. European Journal of Cognitive Psychology, 20(6), 994–1026. doi:10.1080/09541440701686250

    Article  Google Scholar 

  • Fitzgeorge, L., Buckolz, E., & Khan, M. (2011). Recently inhibited responses are avoided for both masked and nonmasked primes in a spatial negative priming task. Attention, Perception, & Psychophysics, 73(5), 1435–1452. doi:10.3758/s13414-011-0125-7

    Article  Google Scholar 

  • Georgopoulos, A. (1997). Voluntary movement: Computational principles and neural mechanisms. In M. Rugg (Ed.), Cognitive Neuroscience (pp. 131–168). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Grison, S., & Strayer, D. L. (2001). Negative priming and perceptual fluency: More than what meets the eye. Perception & Psychophysics, 63(6), 1063–1071. doi:10.3758/BF03194524

    Article  Google Scholar 

  • Guiard, Y. (1983). The lateral coding of rotations: A study of the Simon effect with wheel-rotation responses. Journal of Motor Behavior, 15(4), 331–342.

    Article  PubMed  Google Scholar 

  • Guy, S., & Buckolz, E. (2007). The locus and modulation of the location negative priming effect. Psychological Research, 71(2), 178–191. doi:10.1007/s00426-005-0003-9

    Article  PubMed  Google Scholar 

  • Guy, S., Buckolz, E., & Khan, M. (2006). The locus of location repetition latency effects. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie experimentale, 60(4), 307–318. doi:10.1037/cjep2006028

    Article  Google Scholar 

  • Hafter, E. R., & De Maio, J. (1975). Difference thresholds for interaural delay. Journal of the Acoustical Society of America, 57(1), 181–187. doi:10.1121/1.380412

    Article  PubMed  Google Scholar 

  • Hall, M. D., Pastore, R. E., Acker, B. E., & Huang, W. (2000). Evidence for auditory feature integration with spatially distributed items. Perception & Psychophysics, 62(6), 1243–1257. doi:10.3758/BF03212126

    Article  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1992). Visual factors in sound localization in mammals. Journal of Comparative Neurology, 317(3), 219–232. doi:10.1002/cne.903170302

    Article  PubMed  Google Scholar 

  • Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6, 65–70.

    Google Scholar 

  • Houghton, G., & Tipper, S. P. (1994). A model of inhibitory mechanisms in selective attention. In D. Dagenbach & T. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 53–112). San Diego, CA: Academic Press.

    Google Scholar 

  • Houghton, G., & Tipper, S. P. (1999). Attention and the control of action: An investigation of the effects of selection on population coding of hand and eye movement. In D. Heinke, G. W. Humphreys, & A. Olsen (Eds.), Connectionist models in cognitive neuroscience (Proceedings of the 5th neural computational and psychological workshop) (pp. 283–298). New York: Springer Verlag.

    Chapter  Google Scholar 

  • Houghton, G., Tipper, S. P., Weaver, B., & Shore, D. I. (1996). Inhibition and interference in selective attention: Some tests of a neural network model. Visual Cognition, 3(2), 119–164. doi:10.1080/713756733

    Article  Google Scholar 

  • Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2), 175–219. doi:10.1016/0010-0285(92)90007-O

    Article  PubMed  Google Scholar 

  • Kubovy, M., & Van Valkenburg, D. (2001). Auditory and visual objects. Cognition, 80(1–2), 97–126. doi:10.1016/S0010-0277(00)00155-4

    Article  PubMed  Google Scholar 

  • Leuthold, H., & Schröter, H. (2006). Electrophysiological evidence for response priming and conflict regulation in the auditory Simon task. Brain Research, 1097(1), 167–180. doi:10.1016/j.brainres.2006.04.055

    Article  PubMed  Google Scholar 

  • Maybery, M. T., Clissa, P. J., Parmentier, F. B. R., Leung, D., Harsa, G., Fox, A. M., & Jones, D. M. (2009). Binding of verbal and spatial features in auditory working memory. Journal of Memory and Language, 61(1), 112–133. doi:10.1016/j.jml.2009.03.001

    Article  Google Scholar 

  • Mayr, S., Buchner, A., Möller, M., & Hauke, R. (2011). Spatial and identity negative priming in audition: Evidence of feature binding in auditory spatial memory. Attention, Perception, & Psychophysics, 73(6), 1710–1732. doi:10.3758/s13414-011-0138-2

    Article  Google Scholar 

  • Mayr, S., Hauke, R., & Buchner, A. (2009). Auditory location negative priming: A case of feature mismatch. Psychonomic Bulletin & Review, 16(5), 845–849. doi:10.3758/PBR.16.5.845

    Article  Google Scholar 

  • Meegan, D. V., & Tipper, S. P. (1998). Reaching into cluttered visual environments: Spatial and temporal influences of distracting objects. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 51A(2), 225–249. doi:10.1080/02724989843000004

    Article  Google Scholar 

  • Milliken, B., Tipper, S. P., Houghton, G., & Lupiáñez, J. (2000). Attending, ignoring, and repetition: On the relation between negative priming and inhibition of return. Perception & Psychophysics, 62(6), 1280–1296. doi:10.3758/BF03212130

    Article  Google Scholar 

  • Milliken, B., Tipper, S. P., & Weaver, B. (1994). Negative priming in a spatial localization task: Feature mismatching and distractor inhibition. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 624–646. doi:10.1037/0096-1523.20.3.624

    Google Scholar 

  • Möller, M., Mayr, S., & Buchner, A. (2013). Target localization among concurrent sound sources: No evidence for the inhibition of previous distractor responses. Attention, Perception, & Psychophysics, 75(1), 132–144. doi:10.3758/s13414-012-0380-2

    Article  Google Scholar 

  • Mondor, T. A., Zatorre, R. J., & Terrio, N. A. (1998). Constraints on the selection of auditory information. Journal of Experimental Psychology: Human Perception and Performance, 24(1), 66–79. doi:10.1037/0096-1523.24.1.66

    Google Scholar 

  • Neyedli, H. F., & Welsh, T. N. (2012). The processes of facilitation and inhibition in a cue-target paradigm: Insight from movement trajectory deviations. Acta Psychologica, 139(1), 159–165. doi:10.1016/j.actpsy.2011.11.001

    Article  PubMed  Google Scholar 

  • Park, J., & Kanwisher, N. (1994). Negative priming for spatial locations: Identity mismatching, not distractor inhibition. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 613–623. doi:10.1037/0096-1523.20.3.613

    PubMed  Google Scholar 

  • Parmentier, F. B. R., Maybery, M. T., & Elsley, J. (2010). The involuntary capture of attention by novel feature pairings: A study of voice-location integration in auditory sensory memory. Attention, Perception, & Psychophysics, 72(2), 279–284. doi:10.3758/APP.72.2.279

    Article  Google Scholar 

  • Perrott, D. R., Saberi, K., Brown, K., & Strybel, T. Z. (1990). Auditory psychomotor coordination and visual search performance. Perception & Psychophysics, 48(3), 214–226. doi:10.3758/BF03211521

    Article  Google Scholar 

  • Pumphrey, R. J. (1950). Hearing. Symposium of the Society for Experimental Biology, 4, 3–18.

    Google Scholar 

  • Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks: Empirical clarification through distributional analyses. In W. Prinz & B. Hommel (Eds.), Common Mechanisms in Perception and Action (pp. 494–519). Oxford, England: Oxford University Press.

    Google Scholar 

  • Schlaghecken, F., & Eimer, M. (2002). Motor activation with and without inhibition: Evidence for a threshold mechanism in motor control. Perception & Psychophysics, 64(1), 148–162. doi:10.3758/BF03194564

    Article  Google Scholar 

  • Schuch, S., Bayliss, A. P., Klein, C., & Tipper, S. P. (2010). Attention modulates motor system activation during action observation: Evidence for inhibitory rebound. Experimental Brain Research, 205(2), 235–249. doi:10.1007/s00221-010-2358-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Stimulus-response compatibility: An integrated perspective (pp. 31–86). Oxford, England: North-Holland.

    Google Scholar 

  • Simon, J. R., Hinrichs, J. V., & Craft, J. L. (1970). Auditory S-R compatibility: Reaction time as a function of ear-hand correspondence and ear-response-location correspondence. Journal of Experimental Psychology, 86(1), 97–102. doi:10.1037/h0029783

    Article  PubMed  Google Scholar 

  • Simon, J. R., & Small, A. M., Jr. (1969). Processing auditory information: Interference from an irrelevant cue. Journal of Applied Psychology, 53(5), 433–435. doi:10.1037/h0028034

    Article  PubMed  Google Scholar 

  • Smid, H. G., Mulder, G., & Mulder, L. J. (1990). Selective response activation can begin before stimulus recognition is complete: A psychophysiological and error analysis of continuous flow. Acta Psychologica, 74(2–3), 169–210. doi:10.1016/0001-6918(90)90005-Z

    Article  PubMed  Google Scholar 

  • Sokolov, E. N., Worters, R., & Clarke, A. D. B. (1963). Perception and the conditioned reflex. Oxford: Pergamon Press.

    Google Scholar 

  • Tipper, S. P., Brehaut, J. C., & Driver, J. (1990). Selection of moving and static objects for the control of spatially directed action. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 492–504. doi:10.1037/0096-1523.16.3.492

    PubMed  Google Scholar 

  • Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: Evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 891–905. doi:10.1037/0096-1523.18.4.891

    PubMed  Google Scholar 

  • Tipper, S. P., Weaver, B., & Milliken, B. (1995). Spatial negative priming without mismatching: Comment on Park and Kanwisher (1994). Journal of Experimental Psychology: Human Perception and Performance, 21(5), 1220–1229. doi:10.1037/0096-1523.21.5.1220

    Google Scholar 

  • Treisman, A. (1993). The perception of features and objects. In A. Baddeley & L. Weiskrantz (Eds.), Attention: Selection, awareness, and control: A tribute to Donald Broadbent (pp. 5–35). New York, NY: Clarendon Press/Oxford University Press.

    Google Scholar 

  • Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi:10.1016/0010-0285(80)90005-5

    Article  PubMed  Google Scholar 

  • Valle-Inclán, F., & Redondo, M. (1998). On the automaticity of ipsilateral response activation in the Simon effect. Psychophysiology, 35(4), 366–371. doi:10.1017/S0048577298960917

    Article  PubMed  Google Scholar 

  • Vallesi, A., Mapelli, D., Schiff, S., Amodio, P., & Umiltà, C. (2005). Horizontal and vertical Simon effect: Different underlying mechanisms? Cognition, 96(1), B33–B43. doi:10.1016/j.cognition.2004.11.009

    Article  PubMed  Google Scholar 

  • Wascher, E., Schatz, U., Kuder, T., & Verleger, R. (2001). Validity and boundary conditions of automatic response activation in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 27(3), 731–751. doi:10.1037/0096-1523.27.3.731

    PubMed  Google Scholar 

  • Welsh, T. N., & Elliott, D. (2004). Movement trajectories in the presence of a distracting stimulus: Evidence for a response activation model of selective reaching. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 57(6), 1031–1057. doi:10.1080/02724980343000666

    Article  PubMed  Google Scholar 

  • Welsh, T. N., Elliott, D., & Weeks, D. J. (1999). Hand deviations toward distractors. Evidence for response competition. Experimental Brain Research, 127(2), 207–212. doi:10.1007/s002210050790

    Article  PubMed  Google Scholar 

  • Welsh, T. N., Neyedli, H., & Tremblay, L. (2013). Refining the time course of facilitation and inhibition in attention and action. Neuroscience Letters, 554, 6–10. doi:10.1016/J.Neulet.2013.08.055

    Article  PubMed  Google Scholar 

  • Wickens, C. D., Sandry, D. L., & Vidulich, M. (1983). Compatibility and resource competition between modalities of input, central processing, and output. Human Factors, 25(2), 227–248. doi:10.1177/001872088302500209

    PubMed  Google Scholar 

  • Wickens, C. D., Vidulich, M., & Sandry-Garza, D. (1984). Principles of S-C-R compatibility with spatial and verbal tasks: The role of display-control location and voice-interactive display-control interfacing. Human Factors, 26(5), 533–543. doi:10.1177/001872088402600505

    PubMed  Google Scholar 

  • Wiegand, K., & Wascher, E. (2005). Dynamic aspects of stimulus-response correspondence: Evidence for two mechanisms involved in the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 31(3), 453–464. doi:10.1037/0096-1523.31.3.453

    PubMed  Google Scholar 

  • Wiegand, K., & Wascher, E. (2007a). Response coding in the Simon task. Psychological Research, 71(4), 401–410. doi:10.1007/s00426-005-0027-1

    Article  PubMed  Google Scholar 

  • Wiegand, K., & Wascher, E. (2007b). The Simon effect for vertical S-R relations: changing the mechanism by randomly varying the S-R mapping rule? Psychological Research, 71(2), 219–233. doi:10.1007/s00426-005-0023-5

    Article  PubMed  Google Scholar 

  • Wyatt, N., & Machado, L. (2013). Evidence inhibition responds reactively to the salience of distracting information during focused attention. PLoS ONE, 8(4), e62809. doi:10.1371/journal.pone.0062809

    Article  PubMed Central  PubMed  Google Scholar 

  • Zmigrod, S., & Hommel, B. (2009). Auditory event files: Integrating auditory perception and action planning. Attention, Perception, & Psychophysics, 71(2), 352–362. doi:10.3758/APP.71.2.352

    Article  Google Scholar 

  • Zmigrod, S., & Hommel, B. (2010). Temporal dynamics of unimodal and multimodal feature binding. Attention, Perception, & Psychophysics, 72(1), 142–152. doi:10.3758/APP.72.1.142

    Article  Google Scholar 

Download references

Acknowledgments

The research reported in this article was supported by a grant from the Deutsche Forschungsgemeinschaft (Ma 2610/2-2). We thank Laura Mieth for her assistance with data collection.

Author Note

Malte Möller, Institut für Experimentelle Psychologie, Heinrich-Heine-Universität, Düsseldorf, Germany; Susanne Mayr, Institut für Experimentelle Psychologie, Heinrich-Heine-Universität, Düsseldorf, Germany; Axel Buchner, Institut für Experimentelle Psychologie, Heinrich-Heine-Universität, Düsseldorf, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Möller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möller, M., Mayr, S. & Buchner, A. Effects of spatial response coding on distractor processing: Evidence from auditory spatial negative priming tasks with keypress, joystick, and head movement responses. Atten Percept Psychophys 77, 293–310 (2015). https://doi.org/10.3758/s13414-014-0760-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13414-014-0760-x

Keywords

Navigation