Skip to main content
Log in

Reconstruction of Images from a Series of Holograms Registered with a Low Resolution with the Help of a New Discretization Equation

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A new method for image reconstruction from holograms with a high spatial resolution based on hologram shifts by values smaller than the size of aperture is considered. The method uses the discretization equation obtained with the help of generalized functions. Mathematical modeling of the process of reconstruction of a high-resolution image from low-resolution holograms is performed. The proposed method can be used to obtain digital holograms with the help of the photodetector array with a low resolution. This method does not require solving directly a large-dimensional system of algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. E. N. Leith and J. Upatnieks, ‘‘Reconstructed wavefronts and communication theory,’’ J. Opt. Soc. Am. 52, 1123–1130 (1962). https://doi.org/10.1364/JOSA.52.001123

    Article  ADS  Google Scholar 

  2. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic Press, New York, 1971).

    Google Scholar 

  3. Handbook of Optical Holography, Ed. by H. J. Caulfield (Academic Press, New York, 1979).

    Google Scholar 

  4. M. Miller, Holografue: Teoretické a Expreimentální Základy a Její Použití (SNTL—Nakladatelství Technické Literatury, Praha, 1974).

    Google Scholar 

  5. V. I. Guzhov, S. P. Il’inykh, and S. V. Khaibullin, ‘‘Phase information recovery based on the methods of phase shifting interferometry with small angles between interfering beams,’’ Optoelectron., Instrum. Data Process. 53, 288–293 (2017). https://doi.org/10.3103/S875669901703013X

    Article  ADS  Google Scholar 

  6. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, ‘‘Super-resolution in digital holography by a two-dimensional dynamic phase grating,’’ Opt. Express 16, 17107–17118 (2008). https://doi.org/10.1364/OE.16.017107

    Article  ADS  Google Scholar 

  7. D. Claus, ‘‘High resolution digital holographic synthetic aperture applied to deformation measurement and extended depth of field method,’’ Appl. Opt. 49, 3187–3198 (2010). https://doi.org/10.1364/AO.49.003187

    Article  ADS  Google Scholar 

  8. A. E. Tippie, A. Kumar, and J. R. Fienup, ‘‘High-resolution synthetic-aperture digital holography with digital phase and pupil correction,’’ Opt. Express 19, 12027–12038 (2011). https://doi.org/10.1364/OE.19.012027

    Article  ADS  Google Scholar 

  9. S. V. Blazhevich and E. S. Selyutina, ‘‘Improvement of resolution of digital image using subpixel scanning,’’ Nauchn. Ved. Belgorod. Gos. Univ. Ser.: Mat. Fiz., No. 5, 186–190.

  10. V. I. Guzhov, S. P. Il’inykh, and I. O. Marchenko, ‘‘Method of increasing the spatial resolution in digital holographic microscopy,’’ Optoelectron., Instrum. Data Process. 54, 301–306 (2018). https://doi.org/10.3103/S8756699018030135

    Article  ADS  Google Scholar 

  11. V. S. Vladimirov, Generalized Functions in Mathematical Physics (Nauka, Moscow, 1979).

    MATH  Google Scholar 

  12. I. M. Gel’fant and G. E. Shilov, Generalized Functions and Actions upon Them (Gos. Izd-vo Fiz.-Mat. Literatury, Moscow, 1959).

    Google Scholar 

  13. I. M. Gel’fant and G. E. Shilov, Space of Basic and Generalized Functions (Gos. Izd-vo Fiz.-Mat. Literatury, Moscow, 1958).

    Google Scholar 

  14. S. T. Vaskov, V. M. Efimov, and A. L. Reznik, ‘‘Fast digital image and signal reconstruction by the minimum energy criterion,’’ Optoelectron., Instrum. Data Process. 39 (4), 11–17.

  15. V. I. Guzhov, I. O. Marchenko, E. E. Trubilina, and A. A. Trubilin, ‘‘Sampling signals with finite set of apertures,’’ Omskii Nauchn. Vestn., No. 1, 55-58 (2021). https://doi.org/10.25206/1813-8225-2021-175-55-58

  16. V. I. Guzhov, I. O. Marchenko, and E. E. Trubilina, ‘‘Increasing the spatial resolution of signals in optical systems,’’ Komp’yut. Opt. 46 (1), 65–70 (2022). https://doi.org/10.18287/2412-6179-CO-924

    Article  ADS  Google Scholar 

  17. V. I. Guzhov, Computer Holography (Izd-vo Novosibirskogo Gos. Tekh. Univ., Novosibisrk, 2018).

  18. Stereoscopic Microsope MBS-10. User’s Guideline ATsZ.850.005 RE. http://www.mbs10.ru/pdf/MBS-10_manual.pdf. Cited March 11, 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Guzhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Smirnova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzhov, V.I., Il’inykh, S.P., Zakharov, K.V. et al. Reconstruction of Images from a Series of Holograms Registered with a Low Resolution with the Help of a New Discretization Equation. Optoelectron.Instrument.Proc. 58, 425–429 (2022). https://doi.org/10.3103/S8756699022040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699022040082

Keywords:

Navigation