Skip to main content

Advertisement

Log in

Numerical Simulation and Error Analysis of Gradiometric Systems Based on Three-Component Fluxgate Sensors

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The layout problems of magnetometric gradiometer systems using three-component fluxgate transducers and three-component accelerometric transducers are considered. The transducers are also widely used in spatial orientation measuring systems. Basic mathematical models of three-component magnetometers included in the structure of the gradiometer and suitable for ideal location of a three-component transducer in the device case are proposed. The real layout of fluxgate meters in the gradiometer body is shown, and the angles of deviation of their sensitivity axes from the basis axes of the device are indicated. Refined mathematical models of three-component fluxgate transducers considering the angles of deviation of their sensitivity axes are presented. A method for calibrating a three-component magnetometer with mechanical rotations of fluxgate meters on verification devices and facilities (rotary tables), which allow one to set and control with high accuracy the required angles of the spatial orientation of the device case, is proposed. The errors of a three-component fluxgate transducer are measured using computational experiment (computer simulation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Yu. G. Astrakhantsev, V. P. Starovoitov, and N. A. Beloglazova, ‘‘Pedestrian three-component magnetometer-gradiometer (MGP-01),’’ Ural. Geofiz. Vestn. 30 (2), 9–15 (2017).

    Google Scholar 

  2. V. V. Lyubimov, ‘‘Magnetometers and gradiometers for scientific research,’’ Pribory 149 (11), 8–12 (2012).

    Google Scholar 

  3. M. Janošek, J. Vyhnáneka, and A. Platila, ‘‘Compact magnetic gradiometer and its astatization,’’ Procedia Eng. 120, 1249–1252 (2015). https://doi.org/10.1016/j.proeng.2015.08.841

    Article  Google Scholar 

  4. R. Hiergeist, R. Ketzler, H. Harcken, J. Lüdke, M. Albrecht, T. Brand, and A. Fischer, ‘‘A novel test ground for the equipment qualification of magnetic gradient sensors used for unexploded bomb detection,’’ J. Appl. Geophys. 112, 242–248 (2015). https://doi.org/10.1016/j.jappgeo.2014.12.003

    Article  ADS  Google Scholar 

  5. C. P. Foley, D. L. Tilbrook, K. E. Leslie, R. A. Binks, G. B. Donaldson, J. Du, S. K. Lam, P. W. Schmidt, and D. A. Clark, ‘‘Geophysical exploration using magnetic gradiometry based on HTS SQUIDs,’’ IEEE Trans. Appl. Supercond. 1, 1375–1378 (2001). https://doi.org/10.1109/77.919607

    Article  ADS  Google Scholar 

  6. A. L. Elrefai, I. Sasada, and Sh. Harada, ‘‘Gradiometer and magnetometer integration using a pair of fundamental mode orthogonal fluxgate sensor heads,’’ IEEE Trans. Magn. 51, 4005604 (2015). https://doi.org/10.1109/TMAG.2015.2453345

    Article  Google Scholar 

  7. B. Gavazzi, P. Le Maire, M. Munschy, and A. Dechamp, ‘‘Fluxgate vector magnetometers: A multisensor device for ground, UAV, and airborne magnetic surveys,’’ Leading Edge 35, 796–797 (2016). https://doi.org/10.1190/tle35090795.1

    Article  Google Scholar 

  8. S. Luoma and X. Zhou, ‘‘Construction of a fluxgate magnetic gradiometer for integration with an unmanned aircraft system,’’ Remote Sens. 12, 2551 (2020). https://doi.org/10.3390/rs12162551

    Article  ADS  Google Scholar 

  9. D. G. Milovzorov, A. L. Galiev, and S. R. Ahmetov, ‘‘Multielement triaxial fluxgate gradiometer with variable base,’’ in Proc. Int. Conf. on Electrotechnical Complexes and Systems (ICOECS), Ufa, Russia, 2019 (IEEE, 2019), pp. 258–261. https://doi.org/10.1109/ICOECS50468.2020.9278501

  10. Y. Luo, M.-P. Wu, P. Wang, S.-L. Duan, H.-J. Liu, J.-L. Wang, and Z.-F. An, ‘‘Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application,’’ Appl. Geophys. 12, 283–291 (2015). https://doi.org/10.1007/s11770-015-0508-y

    Article  ADS  Google Scholar 

  11. M. Cunningham, C. Samson, A. Wood, and I. Cook, ‘‘Aeromagnetic surveying with rotary-wing unmanned aircraft system: A case study from a zinc deposit in Nash Creek, New Brunswick, Canada,’’ Pure Appl. Geophys. 175, 3145–3158 (2018). https://doi.org/10.1007/s00024-017-1736-2

    Article  ADS  Google Scholar 

  12. Y. Sui, H. Miao, Z. Zhou, H. Luan, and Y. Wang, ‘‘Correction and compensation of an airborne fluxgate magnetic tensor gradiometer,’’ Explor. Geophys. 49, 726–734 (2019). https://doi.org/10.1071/EG16124

    Article  ADS  Google Scholar 

  13. W. E. Doll, J. R. Sheehan, T. J. Gamey, L. P. Beard, and J. Norton, ‘‘Results of an airborne vertical magnetic gradient demonstration, New Mexico,’’ J. Environ. Eng. Geophys. 13, 277–290 (2008). https://doi.org/10.2113/JEEG13.3.277

    Article  Google Scholar 

  14. D. G. Milovzorov and V. Kh. Yasoveev, ‘‘Mathematical modeling of fluxgate magnetic gradiometers,’’ Optoelectron., Insrum. Data Process. 53, 388–394 (2017). https://doi.org/10.3103/S8756699017040112

    Article  Google Scholar 

  15. T. A. Redkina, D. G. Milovzorov, and R. R. Sadrutdinov, ‘‘Abour errors of gradiometers with bielement ferroprobe sensors,’’ Vestn. Izhevskogo Gos. Tekh. Univ., No. 3, 132–135 (2014).

  16. G. V. Milovzorov, D. G. Milovzorov, V. Kh. Yasoveev, and T. A. Redkina, ‘‘Gradiometric systems based on three-component variable-baseline magnetometer,’’ Ital. Sci. Rev., No. 9, 53–60 (2014).

  17. G. V. Milovzorov, D. G. Milovzorov, and A. G. Milovzorov, ‘‘Design of inductors with static and rotating magnetic field with microprocessor control,’’ in Proc. Int. Conf. on Electrotechnical Complexes and Systems, Ufa, Russia, 2019 (IEEE, 2019), pp. 355–359.

  18. D. G. Milovzorov, ‘‘Method for varying small angular parameters of three-component fluxgate sensor of gradiometric converters,’’ Pribory Sist. Upr., Kontrol’, Diagnostika, No. 12, 1–8 (2020). https://doi.org/10.25791/pribor.12.2020.1225

    Article  Google Scholar 

  19. V. E. Baranova, P. F. Baranov, S. V. Muravyov, and S. V. Uchaikin, ‘‘The production of a uniform magnetic field using a system of axial coils for calibrating magnetometers,’’ Meas. Techn. 58, 550–555 (2015). https://doi.org/10.1007/s11018-015-0752-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Milovzorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milovzorov, D.G., Yasoveev, V.K. Numerical Simulation and Error Analysis of Gradiometric Systems Based on Three-Component Fluxgate Sensors. Optoelectron.Instrument.Proc. 58, 61–73 (2022). https://doi.org/10.3103/S8756699022010083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699022010083

Keywords:

Navigation