Skip to main content
Log in

Analytical Solution for the Actuators Influence Functions of a Circular Deformable Mirror with Free Edge under Concentrated Loads

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

An analytical solution for the problem of deflection of a thin circular plate (substrate) of a deformable mirror with free edge upon the impact of one of actuators concentratedly acting on the plate and resting of their other ends on an infinitely rigid base is obtained. The solution is based on the application of the integral transforms and takes into consideration the kinematic pairs between the plate and actuators, which are deformed according to Hooke’s law. The analytical solution is compared with the finite element method solution in the ANSYS software. The obtained result can be used to optimize actuators pattern and control of circular deformable mirrors in the applications of adaptive optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. R. K. Tyson, Principles of Adaptive Optics (CRC Press, Boca Raton–London–New York, 2015).

    Book  Google Scholar 

  2. G. R. Lemaitre, Astronomical Optics and Elasticity Theory (Springer, Berlin–Heidelberg, 2009). https://doi.org/10.1007/978-3-540-68905-8

  3. D. M. Lyakhov, ‘‘Optimal arrangement of actuators for square mirrors with free edges,’’ Optoelectron., Instrum. Data Process. 52, 57–64 (2016). https://doi.org/10.3103/S875669901601009X

    Article  Google Scholar 

  4. F. Yu. Kanev and V. P. Lukin, Adaptive Optics. Numerical and Experimental Studies (Izd. Optiki Atmosfery SO RAN, Tomsk, 2005).

    Google Scholar 

  5. L. N. Lavrinova and V. P. Lukin, Adaptive Correction of Thermal and Turbulent Distortions of Laser Radiation by a Deformable Mirror (Izd. Optiki Atmosfery SO RAN, Tomsk, 2008).

    Google Scholar 

  6. B. L. Ellerbroek and C. R. Vogel, ‘‘Inverse problems in astronomical adaptive optics,’’ Inverse Probl. 25, 063001 (2009). https://doi.org/10.1088/0266-5611/25/6/063001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. Menikoff, ‘‘Actuator influence functions of active mirrors,’’ Appl. Opt. 30, 833–838 (1991). https://doi.org/10.1364/AO.30.000833

    Article  ADS  Google Scholar 

  8. G. Vdovin, O. Soloviev, M. Loktev, and V. Patlan, OKO Guide to Adaptive Optics (Flexible Optical BV, Delft, 2013).

    Google Scholar 

  9. O. Hoffman, O. Pütsch, J. Stollenwerk, and P. Loosen, ‘‘Model-based analysis of highly dynamic laser beam shaping using deformable mirrors,’’ Procedia CIRP 74, 602–606 (2018).

    Article  Google Scholar 

  10. S. S. Chesnokov, Candidate’s Dissertation in Mathematical Physics (Moscow State Univ., Moscow, 1972).

  11. V. N. Fedoseyev and D. A. Yagnyatinskiy, ‘‘Deflection of a thin rectangular plate with free edges under concentrated loads,’’ Mech. Solids 54, 750–755 (2019). https://doi.org/10.3103/S0025654419050078

    Article  ADS  MATH  Google Scholar 

  12. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford Univ. Press, New York–Oxford, 1998).

    Google Scholar 

  13. M. Bass, Handbook of Optics, Vol. V (McGraw-Hill, New York, 2010).

    Google Scholar 

  14. V. G. Nikiforov, Multilayer Piezoelectric Actuators: Theory and Practice (OAO NII ELPA, Moscow, 2010).

  15. A. I. Lurie, ‘‘Some problems on bending of a circular plate,’’ Prikl. Mat. Mekh. 4 (1), 93–102 (1940).

    Google Scholar 

  16. W. A. Bassali, ‘‘The transverse flexure of thin elastic plates supported at several points,’’ Math. Proc. Cambridge Philos. Soc. 53, 728–743 (1957). https://doi.org/10.1017/S0305004100032795

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. K. Galin’sh and N. G. Gur’yanov, ‘‘Bending of a circular plate under the action of a local load,’’ Teor. Plastin Obolochek, No. 1, 144–151 (1971).

    Google Scholar 

  18. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959).

    MATH  Google Scholar 

  19. K. Itao and S. H. Crandall, ‘‘Natural modes and natural frequencies of uniform, circular, free-edge plates,’’ J. Appl. Mech. 46, 448–453 (1979). https://doi.org/10.1115/1.3424569

    Article  ADS  MATH  Google Scholar 

  20. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, Amsterdam, 2007).

    MATH  Google Scholar 

  21. A. N. Borshevnikov, D. A. Dement’yev, E. V. Leonov, D. M. Lyakhov, G. N. Sokhareva, A. V. Chernykh, Yu. I. Shanin, and V. I. Shchipalkin, ‘‘Control of an adaptive optical system with deformable mirrors of low and high frequency resolution,’’ Optoelectron., Instrum. Data Process. 54, 314–320 (2018). https://doi.org/10.3103/S8756699018030159

    Article  ADS  Google Scholar 

  22. M. A. Vorontsov and V. I. Shmalgauzen, Principles of Adaptive Optics (Nauka, Moscow, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Yagnyatinskiy.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagnyatinskiy, D.A., Fedoseyev, V.N. Analytical Solution for the Actuators Influence Functions of a Circular Deformable Mirror with Free Edge under Concentrated Loads. Optoelectron.Instrument.Proc. 57, 60–69 (2021). https://doi.org/10.3103/S8756699021010131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021010131

Keywords:

Navigation