Skip to main content
Log in

Plasmon-Enhanced Vibrational Spectroscopy of Semiconductors Nanocrystals

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A review of recent results and new data on the study of the optical response from semiconductor nanocrystals obtained using plasmon-enhanced optical spectroscopy, including surface enhanced Raman scattering (SERS) and plasmon-enhanced IR absorption, is presented. These methods are based on the amplification of the phonon response of semiconductor nanocrystals located in the field of localized surface plasmon resonance (LSPR) of metal nanostructures. Owing to the choice of a specific morphology of metal nanostructures, coincidence of the LSPR energy with the laser excitation energy and / or the energy of optical phonons in nanocrystals is provided. Resonant conditions ensure a significant increase in local electric fields and, as a result, a sharp increase in the Raman signal and IR absorption at the frequencies of surface optical phonons of nanocrystals. Amplification of the optical response makes it possible not only to detect monolayer coatings of nanocrystals, but also to study their crystal structure, phase and element compositions, and internal mechanical stresses. Application of Raman scattering (RS) in combination with atomic force microscopy with the use of a metallized probe has opened up new possibilities for analyzing the vibrational and electronic spectra of nanocrystals with nanometer spatial resolution

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. P. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 2010). https://doi.org/10.1007/978-3-642-00710-1

  2. A. P. Alivisatos, ‘‘Semiconductor clusters, nanocrystals, and quantum dots,’’ Science 271, 933–937 (1996). https://doi.org/10.1126/science.271.5251.933

    Article  ADS  Google Scholar 

  3. D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, ‘‘Quantum dots and their multimodal applications: a review,’’ Materials 3, 2260–2345 (2010). https://doi.org/10.3390/ma3042260

    Article  ADS  Google Scholar 

  4. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, ‘‘Quantum dot bioconjugates for imaging, labelling and sensing,’’ Nat. Mater. 4, 435–446 (2005). https://doi.org/10.1038/nmat1390

    Article  ADS  Google Scholar 

  5. D. Bimberg, ‘‘Quantum dot based nanophotonics and nanoelectronics,’’ Electron Lett. 44, 168–171 (2008). https://doi.org/10.1049/el:20080074

    Article  ADS  Google Scholar 

  6. R. Aroca, Surface-Enhanced Vibrational Spectroscopy (John Wiley & Sons, New Jersey, 2006). https://doi.org/10.1002/9780470035641

  7. S. Eustis and M. A. El-Sayed, ‘‘Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,’’ Chem. Soc. Rev. 35, 209–217 (2006). https://doi.org/10.1039/B514191E

    Article  Google Scholar 

  8. C. D’Andrea, J. Bochterle, A. Toma, Ch. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. L. de la Chapelle, P. G. Gucciardi, and A. Pucci, ‘‘Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,’’ ACS Nano 4, 3522–3531 (2013). https://doi.org/10.1021/nn4004764

    Article  Google Scholar 

  9. A. G. Milekhin, N. A. Yeryukov, L. L. Sveshnikova, T. A. Duda, E. E. Rodyakina, E. S. Sheremet, M. Ludemann, O. D. Gordan, A. V. Latyshev, and D. R. T. Zahn, ‘‘Surface enhanced Raman scattering by organic and inorganic analytes on laterally ordered arrays of Au nanoclusters,’’ Thin Solid Films 543, 35–40 (2013). https://doi.org/10.1016/j.tsf.2013.03.070

    Article  ADS  Google Scholar 

  10. A. Milekhin, L. Sveshnikova, and T. Duda, ‘‘Vibrational spectra of quantum dots formed by Langmuir-Blodgett technique,’’ J. Vac. Sci. Technol., B 28, C5E22–C5E24 (2010). https://doi.org/10.1116/1.3442799

  11. E. Sheremet, A. G. Milekhin, R. D. Rodriguez, T. WEiss, M. Nesterov, E. E. Rodyakina, O. D. Gordan, L. L. Sveshnikova, T. A. Duda, V. A. Gridchin, V. M. Dzhagan, M. Hietschold, and D. R. T. Zahn, ‘‘Surface- and tip-enhanced Raman scattering from CdSe nanocrystals,’’ Phys. Chem. Chem. Phys. 17, 21198–21203 (2015). https://doi.org/10.1039/C4CP05087H

    Article  Google Scholar 

  12. A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, ‘‘Giant gap-plasmon tip-enhanced Raman scattering of MoS\({}_{2}\) monolayers on Au nanocluster arrays,’’ Nanoscale 10, 2755–2763 (2018). https://doi.org/10.1039/C7NR06640F

    Article  Google Scholar 

  13. M. Fleischman, P. J. Hendra, and A. J. McQuillan, ‘‘Raman spectra of pyridine adsorbed at a silver electrode,’’ Chem. Phys. Lett. 26, 163–166 (1974). https://doi.org/10.1016/0009-2614(74)85388-1

    Article  ADS  Google Scholar 

  14. Surface Enhanced Raman Scattering, Ed. by R. K. Chang and T. E. Furtak (Plenum Press, New York, 1982).

    Google Scholar 

  15. I. R. Nabiev, R. G. Efremov, and G. D. Chumanov, ‘‘Surface-enhanced Raman scattering and its application to the study of biological molecules,’’ Phys.-Usp. 31, 241–262 (1988). https://doi.org/10.1070/PU1988v031n03ABEH005720

    Article  Google Scholar 

  16. I. Honma, T. Sano, and H. Komiyama, ‘‘Surface-enhanced Raman scattering (SERS) for semiconductor microcrystallites observed in silver-cadmium sulfide hybrid particles,’’ J. Phys. Chem. 97, 6692 (1993). https://doi.org/10.1021/j100127a020

    Article  Google Scholar 

  17. J. S. Suh and J. S. Lee, ‘‘Surface enhanced Raman scattering for CdS nanowires deposited in anodic aluminum oxide nanotemplate,’’ Chem. Phys. Lett. 281, 384–388 (1997). https://doi.org/10.1016/S0009-2614(97)01312-2

    Article  ADS  Google Scholar 

  18. R. Venugopal, P.-I. Lin, Ch.-Ch. Liu, and Y.-Ts. Chen, ‘‘Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,’’ J. Am. Chem. Soc. 127, 11262–11268 (2005). https://doi.org/10.1021/ja044270j

    Article  Google Scholar 

  19. A. G. Milekhin, L. L. Sveshnikova, T. A. Duda, N. V. Surovtsev, S. V. Adichtchev, and D. R. T. Zahn, ‘‘Surface enhanced Raman scattering by CdS quantum dots,’’ JETP Lett. 88, 799–801 (2008). https://doi.org/10.1134/S0021364008240053

    Article  ADS  Google Scholar 

  20. A. G. Milekhin, L. L. Sveshnikova, T. A. Duda, N. A. Yeryukov, E. E. Rodyakina, A. K. Gutakovskii, S. A. Batsanov, A. V. Latyshev, and D. R. T. Zahn, ‘‘Surface-enhanced Raman spectroscopy of semiconductor nanostructures,’’ Physica E 75, 210–222 (2016). https://doi.org/10.1016/j.physe.2015.09.013

    Article  ADS  Google Scholar 

  21. N. A. Yeryukov, A. G. Milekhin, L. L. Sveshnikova, T. A. Duda, L. D. Pokrovsky, A. K. Gutakovskii, S. A. Batsanov, E. E. Rodyakina, A. V. Latyshev, and D. R. T. Zahn, ‘‘Synthesis and characterization of Cu\({}_{x}\)S (\(x\) = 1–2) nanocrystals formed by the Langmuir–Blodgett technique,’’ J. Phys. Chem. C 118, 23409–23414 (2014). https://doi.org/10.1021/jp507355t

    Article  Google Scholar 

  22. J. T. Hugall, J. J. Baumberg, and S. Mahajan, ‘‘Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,’’ Appl. Phys. Lett. 95, 141111 (2009). https://doi.org/10.1063/1.3243982

    Article  ADS  Google Scholar 

  23. K. Anikin, E. Rodyakina, S. Veber, A. Milekhin, A. Latyshev, and D. R. T. Zahn, ‘‘Localized surface plasmon resonance in gold nanoclusters arrays,’’ Plasmonics 14, 1527–1537 (2019). https://doi.org/10.1007/s11468-019-00949-2

    Article  Google Scholar 

  24. A. G. Milekhin, L. L. Sveshnikova, T. A. Duda, E. E. Rodyakina, V. M. Dzhagan, E. Sheremet, O. D. Gordan, C. Himcinschi, A. V. Latyshev, and D. R. T. Zahn, ‘‘Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays,’’ Appl. Surf. Sci. 370, 410–417 (2016). https://doi.org/10.1016/j.apsusc.2016.02.185

    Article  ADS  Google Scholar 

  25. A. G. Milekhin, L. L. Sveshnikova, T. A. Duda, E. E. Rodyakina, V. M. Dzhagan, O. D. Gordan, S. L. Veber, C. Himcinschi, A. V. Latyshev, and D. R. T. Zahn, ‘‘Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir-Blodgett technique,’’ Beilstein J. Nanotechnol. 6, 2388–2395 (2015). https://doi.org/10.3762/bjnano.6.245

    Article  Google Scholar 

  26. D. O. Sigle, J. T. Hugall, S. Ithurria, B. Dubertret, and J. J. Baumberg, ‘‘Probing confined phonon modes in individual CdSe nanoplatelets using surface-enhanced Raman scattering,’’ Phys. Rev. Lett. 113, 087402 (2014). https://doi.org/10.1103/PhysRevLett.113.087402

    Article  ADS  Google Scholar 

  27. V. M. Dzhagan, Yu. M. Azhniuk, A. G. Milekhin, and D. R. T. Zahn, ‘‘Vibrational spectroscopy of semiconductor nanocrystals,’’ J. Phys. D: Appl. Phys. 51, 503001 (2018). https://doi.org/10.1088/1361-6463/aada5c

    Article  Google Scholar 

  28. K. V. Anikin, A. G. Milekhin, M. Rahaman, T. A. Duda, I. A. Milekhin, E. E. Rodyakina, R. B. Vasiliev, V. M. Dzhagan, D. R. T. Zahn, and A. V. Latyshev, ‘‘Plasmon-enhanced near-field optical spectroscopy of multicomponent semiconductor nanostructures,’’ Optoelectron., Instrum. Data Process. 55, 488–494 (2019). https://doi.org/10.3103/S875669901905011X

    Article  ADS  Google Scholar 

  29. L. H. Little, Infrared Spectra of Adsorbed Species (Academic Press, London, 1966).

    Google Scholar 

  30. A. Hartstein, J. R. Kirtley, and J. C. Tsang, ‘‘Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,’’ Phys. Rev. Lett. 45, 201–204 (1980). https://doi.org/10.1103/PhysRevLett.45.201

    Article  ADS  Google Scholar 

  31. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, ‘‘High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,’’ Nano Lett. 10, 2511–2518 (2010). https://doi.org/10.1021/nl101042a

    Article  ADS  Google Scholar 

  32. M. L. de la Chapelle and A. Pucci, Nanoantenna (Pan Stanford Publishing, Singapore, 2013).

    Book  Google Scholar 

  33. A. Milekhin, S. A. Kuznetsov, E. E. Rodyakina, A. G. Milekhin, A. V. Latyshev, and D. R. T. Zahn, ‘‘Localized surface plasmons in the structures with linear Au nanoantennas on SiO2/Si surface,’’ Beilstein J. Nanotechnol. 7, 1519–1526 (2016). https://doi.org/10.3762/bjnano.7.145

    Article  Google Scholar 

  34. A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, ‘‘Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,’’ Nano Lett. 15, 386–391 (2015). https://doi.org/10.1021/nl503705w

    Article  ADS  Google Scholar 

  35. A. G. Milekhin, S. A. Kuznetsov, L. L. Sveshnikova, T. A. Duda, I. A. Milekhin, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, ‘‘Surface-enhanced infrared absorption by optical phonons in nanocrystal monolayers on Au nanoantenna arrays,’’ J. Phys. Chem. 121, 5779–5786 (2017). https://doi.org/10.1021/acs.jpcc.6b11431

    Article  Google Scholar 

  36. A. G. Milekhin, S. A. Kuznetsov, I. A. Milekhin, L. L. Sveshnikova, T. A. Duda, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, ‘‘Nanoantenna structures for the detection of phonons in nanocrystals,’’ Beilstein J. Nanotechnol. 9, 2646–2656 (2018). https://doi.org/10.3762/bjnano.9.246

    Article  Google Scholar 

  37. X. Jin, A. Cerea, G. C. Messina, A. Rovere, R. Piccoli, Fr. De Donato, F. Palazon, A. Perucchi, P. Di Pietro, R. Morandotti, S. Lupi, F. De Angelis, M. Prato, A. Toma, and L. Razzari, ‘‘Reshaping the phonon energy landscape of nanocrystals inside a terahertz plasmonic nanocavity,’’ Nat. Commun. 9, 763 (2018). https://doi.org/10.1038/s41467-018-03120-3

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the VTAN shared resource center of the Novosibirsk State University and also the Nanostructures shared resource center of the Rzhanov Institute of Semiconductor Physics SB RAS for using the equipment.

Funding

The research was supported by the RF Ministry of Education and Science, the Volkswagen Foundation, the Russian Foundation for Basic Research, and the German Research Foundation, projects nos. 18-02-00615_a, 18-29-20066 mk, and 19-52-12041 NNIO_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Milekhin.

Additional information

Translated by V. A. Alekseev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milekhin, A.G., Duda, T.A., Rodyakina, E.E. et al. Plasmon-Enhanced Vibrational Spectroscopy of Semiconductors Nanocrystals. Optoelectron.Instrument.Proc. 56, 503–509 (2020). https://doi.org/10.3103/S8756699020050076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020050076

Keywords:

Navigation