Skip to main content
Log in

Gigahertz MEMS Clock Generator

  • Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

An intensely developing aspect of advanced microelectronics is microelectromechanical systems (MEMS). The present paper describes various issues associated with the development of a new MEMS clock generator capable of operating at gigahertz frequencies. The main features of generating and supporting forced oscillations of the moving electrode under the action of electrostatic forces are analyzed. A possibility of supporting such oscillations under conditions of high inertial g-loads (up to 106g and more) is demonstrated. A mathematical model of a micro-oscillator is developed, and the basic regimes of its operation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. M. van Beek and R. Puers, “A Review of MEMS Oscillators for Frequency Reference and Timing Applications,” J. Micromech. Microeng. 22(1), 013001 (2012).

    Article  ADS  Google Scholar 

  2. Ch. Zuo, J. van der Spiegel, and G. Piazza, “1.05 GHz MEMS Oscillator Based on Lateral-Field-Excited Piezoelectric AlN Resonators,” in Proc. of the Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (EFTF-IFCS 2009), Besancon, France, April 20–24, 2009, pp. 381–384.

  3. D. Weinstein and S. A. Bhave, “Internal Dielectric Transduction of a 4.5 GHz Silicon Bar Resonator,” in IEEE International Electron Devices Meeting, Washington, USA, December 10–12, 2007, pp. 415–418.

  4. X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A Self-Sustaining Ultrahigh-Frequency Nanoelectromechanical Oscillator,” Nature Nanotechnology 3(6), 342–346 (2008).

    Article  ADS  Google Scholar 

  5. B. Kim, Ch. M. Jha, T. White, et al., “Temperature Dependence of Quality Factor in MEMS Resonators,” J. Microelectromech. Syst. 17, 755–766 (2008).

    Article  Google Scholar 

  6. J. L. Lopez, J. Verd, J. Teva, et al., “Integration of RF-MEMS Resonators on Submicrometric Commercial CMOS Technologies,” J. Micromech. Microeng. 19, 015002 (2009).

    Article  ADS  Google Scholar 

  7. E. G. Kostsov, “Electromechanical Energy Conversion in the Nanometer Gaps,” Proc. SPIE 7025, 70251G (2008).

    Article  ADS  Google Scholar 

  8. I. L. Baginsky and E. G. Kostsov, “High Energy Output MEMS Based on Thin Layers of Ferroelectric Materials,” Ferroelectrics 351(1), 69–78 (2007).

    Article  Google Scholar 

  9. E. G. Kostsov and A. A. Sokolov, “Fast-Response Electrostatic Actuator Based on Nano-Gap,” Micromachines 8(78), 2–7 (2017).

    Google Scholar 

  10. E. G. Kostsov and S. I. Fadeev, “New Microelectromechanical Cavities for Gigahertz Frequencies,” Avtometriya 49(2), 115–122 (2013) [Optoelectron., Instrum. Data Process. 49 (2), 204–210 (2013)].

    Google Scholar 

  11. A. A. Andronov, A. A. Vitte, and S. E. Khaikin, Theory of Oscillations (GIFML, Moscow, 1959) [in Russian].

    Google Scholar 

  12. Ya. B. Zel’dovich and A. D. Myshkis, Elements of Applied Mathematics (Nauka, Moscow, 1965), pp. 242–284 [in Russian].

    Google Scholar 

  13. I. L. Baginsky and E. G. Kostsov, “Reversible High Speed Electrostatic ‘Contact’,” Semiconductors 44(13), 1654–1657 (2010).

    Article  ADS  Google Scholar 

  14. M. Jia, X. Li, Zh. Song, et al., “Micro-Cantilever Shocking-Acceleration Switches with Threshold Adjusting and On-State Latching Functions,” J. Micromech. Microeng. 17(3), 567–575 (2007).

    Article  ADS  Google Scholar 

  15. H. Takamatsu and T. Sugiura, “Nonlinear Vibration of Electrostatic MEMS under DC and AC Applied Voltage,” in Proc. of the Intern. Conf. on MEMS, NANO and Smart Systems (ICMENS 2005), Banff, Canada, July 24–27, 2005, pp. 423–424.

  16. Ya. S. Grinberg, Yu. A. Pashkin, and E. V. Il’ichev, “Nanomechanical Resonators,” Usp. Fiz. Nauk 182(4), 407–436 (2012).

    Article  Google Scholar 

  17. X. M. H. Huang, Ch. A. Zorman, M. Mehregany, and M. L. Roukes, “Nanoelectromechanical Systems: Nanodevice Motion at Microwave Frequencies,” Nature 421(6922), 496–497 (2003).

    Article  ADS  Google Scholar 

  18. K. L. Ekincia and M. L. Roukes, “Nanoelectromechanical Systems,” Rev. Sci. Instrum. 76, 061101 (2005).

    Article  ADS  Google Scholar 

  19. S. E. Lyshevski, Nano- and Microelectromechanical Systems (CRC Press, Boca Raton-London-New York, 2001).

    Google Scholar 

  20. Y. Jang, S. Kang, H. Ch. Kim, and K. Chun, “An RF MEMS Switch with a Differential Gap between Electrodes for High Isolation and Low Voltage Operation,” Micromech. Microeng. 21(7), 1–9 (2011).

    Article  Google Scholar 

  21. S. Y. No and F. Ayazi, “The HARPSS Process for Fabrication of Nano-Precision Silicon Electromechanical Resonators,” in Proc. of the 1st IEEE Conf. on Nanotechnology, Mauli, USA, October 30–31, 2001, pp. 489–494.

  22. E. G. Kostsov, A. I. Skurlatov, and A. M. Shcherbachenko, “Optoelectronic System for Studying Nanodisplacements of Moving MEMS Elements,” Avtometriya 54(4), 92–100 (2018) [Optoelectron., Instrum. Data Process. 54 (4), 397–404 (2018)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Kostsov.

Additional information

Russian Text © The Author(s), 2019, published in Avtometriya, 2019, Vol. 55, No. 2, pp. 61–69.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostsov, E.G., Sokolov, A.A. Gigahertz MEMS Clock Generator. Optoelectron.Instrument.Proc. 55, 154–161 (2019). https://doi.org/10.3103/S8756699019020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699019020079

Keywords

Navigation