Skip to main content
Log in

Analysis of Correction Methods for Digital Terrain Models Based on Satellite Data

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Correction algorithm for digital terrain models derived from remote sensing of the Earth’s surface are analyzed. The accuracy of the ASTER GDEM2, SRTM X-band, and ALOS DMS global digital elevation models were analyzed, showing that ALOS DMS images have the smallest absolute and relative errors for different relief conditions (flat, hilly and highly dissected plains) of the Novosibirsk oblast’. A comparative analysis of the algorithms proposed by Wang and Liu, Plantchon and Darboux, Pelletier, and Tarboton was performed to eliminate artifacts on original satellite images associated with local topographic lows (depressions, pits). The smallest errors for different terrain conditions were obtained using the algorithm of Wang and Liu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Sharyi, “Geomorphometry in Earth Sciences and Ecology: A Review of Methods and Applications,” Izv. SamNTs RAN 8 (2), 458–473 (2006).

    MathSciNet  Google Scholar 

  2. Geomorphometry: Concepts, Software, Applications. Vol. 33. Ch. 1. Geomorphometry: A Brief Guide, Ed. by R. J. Pike, I. S. Evans, and T. Hengl (Elsevier, 2009), pp. 3–30.

    Google Scholar 

  3. Studies on Environmental and Applied Geomorphology. Ch. 3. Geomorphological Instability Triggered by Heavy Rainfall: Examples in the Abruzzi region (Central Italy), Ed. by E. Miccadei, T. Piacentini, F. Daverio, and R. Di Michele (InTech, Croatia, 2012), pp. 45–63.

    Google Scholar 

  4. A. S. Alekseev and A. A. Nikiforov, “Effects of Topography on the Structure and Productivity of Forest Landscapes Using 3D Modeling in Terms of the Lisinsky Educational and Experimental Forest Enterprise,” Lesovedenie, No. 5, 42–53 (2014).

    Google Scholar 

  5. L. S. Sharaya and P. A. Sharyi, “Geomorphometric Study of the Spatial Organization of Forest Ecosystems,” Ekologiya, No. 1, 3–10 (2011).

    Google Scholar 

  6. A. I. Pavlova and V. K. Kalichkin, “Using the Geomorphometric Analysis of a Relief for Creating a Database of Farmlands,” Sib. Vestn. Sel’khoz. Nauki, No. 5, 5–13 (2016).

    Google Scholar 

  7. Wiki-Photogrammetry. Global Digital Elevation Models. http://www.racurs.ru/wiki.

  8. T. E. Samsonov, Multiscale Mapping of Relief: General Geographic and Hypsometric Maps (LAP Lambert Academic Publishing, Saarbrucken, 2011).

    Google Scholar 

  9. D. Gesch, G. Evans, J. Mauck, et al., “The National Map Elevation,” U. S. Geological Survey Open-File Report 2009–3053. 2009. https://pubs.usgs.gov/fs/2009/3053.

    Google Scholar 

  10. D. B. Gesch, M. J. Oimoen, and G. A. Evans, “Accuracy Assessment of the U. S. Geological Survey National Elevation Dataset, and Comparison with Other Large-Area Elevation Datasets SRTM and ASTER,” U. S. Geological Survey Open-File Report 2014–1008. 2014. https://pubs.usgs.gov/of/2014/1008/pdf/ofr2014-1008.pdf.

    Google Scholar 

  11. M. Dubininm, “General Description of ASTER GDEM,” in GIS-LAB. Geographic Information Systems and Remote Sensing. 2009. http://gis-lab.info/qa/aster-gdem.html.

    Google Scholar 

  12. Shuttle Radar Topography Mission. Data Products. https://www2.jpl.nasa.gov/srtm/cband-dataproducts.html.

  13. T. Farr, P. Rosen, E. Caro, et al., “The Shuttle Radar Topography Mission,” Rev. Geophys. 45 (2), 1–33 (2007).

    Article  Google Scholar 

  14. E. Rodriguez, C. S. Morris, and J. E. Belz, “A Global Assessment of the SRTM Performance,” Photogramm. Eng. Remote Sens. 72 (3), 249–260 (2006).

    Article  Google Scholar 

  15. T. Tadono, H. Ishida, F. Oda, et al., “Precise Global DEM Generation by ALOS PRISM,” ISPRS Ann. Photogramm., Remote Sens. Spatial Inform. Sci. ii-4, 71–76 (2014).

    Google Scholar 

  16. J. Takaku, T. Tadono, K. Tsutsui, and M. Ichikawa, “Validation of “AW3D” Global DSM Generated from ALOS PRISM,” ISPRS Ann. Photogramm., Remote Sens. Spatial Inform. Sci. III-4, 25–31 (2016).

    Google Scholar 

  17. A. I. Pavlova, “Analysis of Elevation Interpolation Methods for Creating Digital Elevation Models,” Avtometriya 53 (2), 86–94 (2017) [Optoelectron., Instrum. Data Process. 53 (2), 171–177 (2017)].

    Google Scholar 

  18. V. M. Kravtsov and R. P. Donukalova, Geography of Novosibirsk oblast’: Textbook (INFOLIO-press, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  19. S. K. Jenson and J. O. Domingue, “Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis,” Photogramm. Eng. Remote Sens. 54 (11), 1593–1600 (1988).

    Google Scholar 

  20. O. Planchon and F. Darboux, “A Fast, Simple and Versatile Algorithm to Fill the Depressions of Digital Elevation Models,” Catena 46 (3), 159–176 (2001).

    Google Scholar 

  21. L. Wang, H. Liu, “An Efficient Method for Identifying and Filling Surface Depressions in Digital Elevation Models for Hydrologic Analysis and Modelling,” Intern. J. Geograph. Inform. Sci. 20 (2), 193–213 (2006).

    Article  MathSciNet  Google Scholar 

  22. M. F. Hutchinson, “A New Method for Gridding Elevation and Stream Line Data with Automatic Removal of Spurious Pits,” J. Hydrology 106 (3), 211–232 (1989).

    Article  ADS  Google Scholar 

  23. J. O’Callaghan, D. Mark, “The Extraction of Drainage Networks from Digital Elevation Data,” Computer Vision, Graphics Image Process 28 (3), 323–344 (1984).

    Article  Google Scholar 

  24. R. Barnes, C. Lehman, and D. Mulla, “Priority-Flood: An Optimal Depression-Filling and Watershed-Labeling Algorithm for Digital Elevation Models,” Computers Geosci. 62, 117–127 (1984).

    Article  ADS  Google Scholar 

  25. Y. Liu, W. Zhang, and J. Xu, “Another Fast and Simple DEM Depression Filling Algorithm Based on Priority Queue Structure,” Atmospheric Oceanic Sci. Lett. 2 (4), 214–219 (2009).

    Article  Google Scholar 

  26. J. Fairfield and P. Leymarie, “Drainage Networks from Grid Digital Elevation Models,” Water Resour. Res. 27 (5), 709–717 (1991).

    Article  ADS  Google Scholar 

  27. N. L. Lea, “An Aspect Driven Kinematic Routing Algorithm,” in Overland Flow: Hydraulics and Erosion Mechanics, Ed. by A. J. Parsons and A. D. Abrahams (Chapman and Hall, New York, 1992), pp. 147–175.

    Google Scholar 

  28. D. G. Tarboton, “A New Method for the Determination of Flow Directions and Upslope Areas in Grid Digital Elevation Models,” Water Resour. Res. 33 (2), 309–319 (1997).

    Article  ADS  Google Scholar 

  29. M. She, An Integrated Hydrological Modelling System: User Guide. Vol. 1 (DHI Software, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Pavlova.

Additional information

Original Russian Text © A.I. Pavlova, A.V. Pavlov, 2018, published in Avtometriya, 2018, Vol. 54, No. 5, pp. 25–32.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, A.I., Pavlov, A.V. Analysis of Correction Methods for Digital Terrain Models Based on Satellite Data. Optoelectron.Instrument.Proc. 54, 445–450 (2018). https://doi.org/10.3103/S8756699018050035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699018050035

Keywords

Navigation