Skip to main content
Log in

Method of Increasing the Spatial Resolution in Digital Holographic Microscopy

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A new method of increasing the spatial resolution in digital holographic microscopy is considered. The method is based on supplementing the initial hologram with results measured in the case of photodetector shifting in space by a value smaller than the resolution used. In contrast to other known approaches, this method does not require a system of equations to be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gabor, “A New Microscopic Principle,” Nature 161 (4098), 777–778 (1948).

    Article  ADS  Google Scholar 

  2. V. I. Guzhov, Mathematical Methods of Digital Holography: Tutorial (Izd. NGTU, Novosibirsk, 2017) [in Russian].

    Google Scholar 

  3. M. Junwei, B. Yao, P. Gao, et al., “Parallel Phase-Shifting Interferometry Based on Michelson-like Architecture,” Appl. Opt. 49 (34), 6612–6616 (2013).

    Google Scholar 

  4. L. Ma, Y. Li, H. Wang, and H. Jin, “Fast Algorithm for Reliability-Guided Phase Unwrapping in Digital Holographic Microscopy,” Appl. Opt. 51 (36), 8800–8807 (2012).

    Article  ADS  Google Scholar 

  5. V. Micó, C. Ferreira, Z. Zalevsky, and J. Garcia, “Basic Principles and Applications of Digital Holographic Microscopy,” in Microscopy: Science, Technology, Applications and Education, Ed. by A. Méndez-Vilas and J. Diaz, Formatex Microscopy Ser. 2 (4), 1411–1418 (2010).

    Google Scholar 

  6. V. P. Koronkevich, Image Formation in Optical Systems: Tutorial (Izd. NGTU, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  7. M. Paturzo, F. Merola, S. Grilli, et al., “Super-Resolution in Digital Holography by a Two-Dimensional Dynamic Phase Grating,” Opt. Express. 16, 17107–17118 (2008).

    Article  ADS  Google Scholar 

  8. D. Claus, “High Resolution Digital Holographic Synthetic Aperture Applied to Deformation Measurement and Extended Depth of Field Method,” Appl. Opt. 49 (16), 3187–3198 (2010).

    Article  ADS  Google Scholar 

  9. A. E. Tippie, A. Kumar, and J. R. Fienup, “High-Resolution Synthetic-Aperture Digital Holography with Digital Phase and Pupil Correction,” Opt. Express. 19 (3), 12027–12038 (2011).

    Article  ADS  Google Scholar 

  10. S. V. Blazhevich and E. S. Selyutina, “Increase in the Digital Image Resolution with the Use of Subpixel Scanning,” Nauch. Vedomosti BelGU. Ser. Mat. Fiz. 176 (5(34)), 186–190 (2014).

    Google Scholar 

  11. S. T. Vaskov, V. M. Efimov, and A. L. Reznik, “Fast Digital Image and Signal Reconstruction by the Minimum Energy Criterion,” Avtometriya 39 (4), 13–20 (2003) [Optoelectron., Instrum. Data Process. 39 (4), 11–17 (2003)].

    Google Scholar 

  12. V. I. Guzhov, D. V. Il’timirov, D. S. Khaidukov, et al., “Modification of Optical Microscopes,” Avtomatika Program. Inzheneriya 16 (2), 71–76 (2016).

    Google Scholar 

  13. V. I. Guzhov, E. N. Denezhkin, O. V. Chernov, and N. S. Zarubin, “Reconstruction of Images from Real Holograms Recorded on Photoplates,” Avtomatika Program. Inzheneriya 19 (1), 76–80 (2017).

    Google Scholar 

  14. V. I. Guzhov, V. A. Emel’yanov, and D. S. Khaidukov, “Domain of Possible Application of the Discrete Fourier and Fresnel Transforms,” Avtomatika Program. Inzheneriya 15 (1), 97–103 (2016).

    Google Scholar 

  15. V. I. Guzhov, S. P. Il’inykh, and S. V. Khaibullin, “Phase Information Recovery Based on the Methods of Phase Shifting Interferometry with Small Angles between Interfering Beams,” Avtometriya 53 (3), 101–106 (2017) [Optoelectron., Instrum. Data Process. 53 (3), 288–293 (2017)].

    Google Scholar 

  16. Scan Company, RatisXY(Z) Two-Coordinate Plane-Parallel Scanner. http://www.nanoscantech.com/ru/products/stage/stage-76.html.

  17. Camera IQ. Vieworks VN — High-Resolution Video Cameras with the Pixel Shift Technology. https://www.cameraiq.ru.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Guzhov.

Additional information

Original Russian Text © V.I. Guzhov, S.P. Il’inykh, I.O. Marchenko, 2018, published in Avtometriya, 2018, Vol. 54, No. 3, pp. 104–110.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzhov, V.I., Il’inykh, S.P. & Marchenko, I.O. Method of Increasing the Spatial Resolution in Digital Holographic Microscopy. Optoelectron.Instrument.Proc. 54, 301–306 (2018). https://doi.org/10.3103/S8756699018030135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699018030135

Keywords

Navigation