Skip to main content
Log in

Spectral Method of Detection of Laser Doppler Velocimeter Signals in Turbulent Flows

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A spectral method of detection of laser Doppler velocimeter signals in turbulent flows is proposed. The method is based on estimating the signal/noise ratio adapted to the width of the power spectral density of the signal and comparing its value with the recognition threshold. Numerical simulations show that the error of the signal/noise ratio estimates is 1% for different velocities of the turbulent flow. Physical experiments aimed at measuring turbulent aerodynamic processes show that the proposed method offers a possibility of eliminating the errors of calculating the mean value and the velocity deviation equal to 15 and 78% by means of eliminating the signals with low signal/noise ratios from the processing system. Application of the proposed method also ensures lower nonuniformity of the signal/noise ratio estimates than that ensured by the famous method developed by Tropea for a wide range of turbulent velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Meledin, Information Opto-Electronic Diagnostics. Science and Innovative Industrial Technologies (Akademizdat, Novosibirsk, 2015) [in Russian].

    Google Scholar 

  2. V. S. Sobolev, Optimal Estimates of Optical Signal Parameters (Izd. SO RAN, Novosibirsk, 2011) [in Russian].

    Google Scholar 

  3. V. S. Sobolev, F. A. Zhuravel’, and G. A. Kashcheeva, “Comparative Analysis of the Performance of Laser Doppler Systems Using Maximum Likelihood and Phase Increment Methods,” Avtometriya 52 (6), 29–33 (2016) [Optoelectron., Instrum. Data Process. 52 (6), 552–556 (2016)].

    Google Scholar 

  4. H.-H. Qiu, M. Sommerfeld, and F. Durst, “Two Novel Doppler Signal Detection Methods for Laser Doppler and Phase Doppler Anemometry,” Meas. Sci. Technol. 5 (7), 769–778 (1994).

    Article  ADS  Google Scholar 

  5. A. Le Duff, G. Plantier, and A. Sourice, “Particle Detection and Velocity Measurement in Laser Doppler Velocimetry Using Kalman Filters,” in Proc. of the IEEE Intern. Conf. Acoustics, Speech, and Signal Processing, Montreal, Canada, May 17–21, 2004, Vol. 2, pp. 365–368.

    Google Scholar 

  6. A. Boutier, Laser Velocimetry in Fluid Mechanics (John Wiley & Sons, London, 2013).

    Google Scholar 

  7. D. Matovic and C. Tropea, “Spectral Peak Interpolation with Application to LDA Signal Processing,” Meas. Sci. Technol. 2 (11), 1100–1106 (1991).

    Article  ADS  Google Scholar 

  8. H. E. Albrecht, N. Damaschke, M. Borys, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, Berlin — Heidelberg, 2003).

    Book  Google Scholar 

  9. C. Tropea, A. Yarin, and J. F. Foss, Springer Handbook of Experimental Fluid Mechanic (Springer-Verlag, Berlin — Heidelberg, 2007).

    Book  Google Scholar 

  10. M. Muste, J. Aberle, D. Admiraal, et al., Experimental Hydraulics: Methods, Instrumentation, Data Processing and Management (Taylor & Francis, New York, 2017).

    Book  Google Scholar 

  11. W. K. Harteveld, R. F. Mudde, and H. E. A. van den Akker, “Dual Burst Wavelet LDA Processor Implemented and Tested on Real Flows,” in Proc. of the 12th Intern. Symp. Applied Laser Techn. Fluid Mechanics, Lisbon, Portugal, 2004. [CD].

    Google Scholar 

  12. L. H. Benedict, H. Nobach, and C. Tropea, “Estimation of Turbulent Velocity Spectra from Laser Doppler Data,” Meas. Sci. Technol. 11, 1089–1104 (2000).

    Article  ADS  Google Scholar 

  13. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Pearson, 1975).

    MATH  Google Scholar 

  14. Yu. N. Dubnishchev, V. P. Koronkevich, and V. S. Sobolev, Laser Interferometry (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  15. S. I. Baskakov, Radio Engineering Circuits and Signals (Vyssh. Shkola, Moscow, 1983) [in Russian].

    Google Scholar 

  16. A. V. Klimov, V. G. Glavnyi, G. V. Bakakin, and V. G. Meledin, “Spectral Method for Processing Signals of a High-Accuracy Laser Radar,” Avtometriya 52 (6), 42–49 (2016) [Optoelectron., Instrum. Data Process. 52 (6), 563–569 (2016)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Klimov.

Additional information

Original Russian Text © A.V. Klimov, V.G. Meledin, Yu.A. Anikin, D.V. Kulikov, S.V. Krotov, I.K. Kabardin, 2018, published in Avtometriya, 2018, Vol. 54, No. 3, pp. 85–93.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimov, A.V., Meledin, V.G., Anikin, Y.A. et al. Spectral Method of Detection of Laser Doppler Velocimeter Signals in Turbulent Flows. Optoelectron.Instrument.Proc. 54, 284–291 (2018). https://doi.org/10.3103/S8756699018030111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699018030111

Keywords

Navigation