Skip to main content
Log in

Method of quadrotor flight control in the target tracking problem

  • Automation Systems in Scientific Research and Industry
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A problem of control of trajectory motion of a quadrotor vehicle is considered. The choice of the form of required differential equations in the previously proposed method of tracking of a moving target is justified. The workability of the control system in the presence of measurement noise and external perturbations is confirmed by results of experiments with the AR.Drone quadrotor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cutler, N. Kemal Ure, B. Michini, and J. P. How, “Comparison of Fixed and Variable Pitch Actuators for Agile Quadrotors,” in Proc. of the AIAA Guidance, Navigation, and Control Conference (GNC), Portland, USA, August, 2011. AIAA Paper No. 2011–6406.

    Google Scholar 

  2. D. Mellinger and V. Kumar, “Minimum Snap Trajectory Generation and Control for Quadrotors,” in Proc. of the IEEE Intern. Conf. on Robotics and Automation (ICRA), Shanghai, China (IEEE, 2011), pp. 2520–2525.

    Google Scholar 

  3. O. Brock and O. Khatib, “Real-Time Replanning in High-Dimensional Configuration Spaces Using Sets of Homotopic Paths,” in Proc. of the Intern. Conf. on Robotics and Automation (ICRA) (IEEE, 2000), pp. 550–555.

    Google Scholar 

  4. A. Stentz, “The Focussed d * Algorithm for Real-Time Replanning,” in Proc. of the Intern. Joint Conf. on Artificial Intelligence, August, 1995, Vol. 2, pp. 1652–1659.

    Google Scholar 

  5. S. Thrun, M. Montemerlo, H. Dahlkamp, et al., “Winning the DARPA Grand Challenge,” J. Field Robotics 23 (9), 661–692 (2006).

    Article  Google Scholar 

  6. M. Egerstedt, X. Hu, and A. Stotsky, “Control of Mobile Platforms Using a Virtual Vehicle Approach,” IEEE Trans. Automat. Contr. 46 (11), 1777–1782 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  7. Yu. S. Belinskaya and V. N. Chetverikov, “Control of a Four-Blade Helicopter,” Nauka Obraz., No. 5, 157–171 (2012).

    Google Scholar 

  8. S. Bouabdallah and R. Siegwart, “Backstepping and Slidingmode Techniques Applied to an Indoor Micro Quadrotor,” in Proc. of the IEEE Intern. Conf. on Robotics and Automation (ICRA), Barcelona, Spain (IEEE, 2005), pp. 2247–2252.

    Google Scholar 

  9. V. I. Utkin, Sliding Modes in Optimization and Control Problems. Vol. 3 (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  10. Yu. N. Zolotukhin and A. A. Nesterov, “Inverted Pendulum Control with Allowance for Energy Dissipation,” Avtometriya 46 (5), 3–10 (2010) [Optoelectron., Instrum. Data Process. 46 (5), 401–407 (2010)].

    Google Scholar 

  11. S. A. Belokon’, Yu. N. Zolotukhin, K. Yu. Kotov, et al., “Using the Kalman Filter in the Quadrotor Vehicle Trajectory Tracking System,” Avtometriya 49 (6), 14–24 (2013) [Optoelectron., Instrum. Data Process. 49 (6), 536–545 (2013)].

    Google Scholar 

  12. Yu. N. Zolotukhin, K. Yu. Kotov, A. S. Mal’tsev, et al., “Robust Leader–Follower Formation Control of Mobile Robots by the Structural Synthesis Method,” Avtometriya 51 (5), 82–91 (2015) [Optoelectron., Instrum. Data Process. 51 (5), 496–504 (2015)].

    Google Scholar 

  13. K. Yu. Kotov, A. S. Mal’tsev, A. A. Nesterov, et al., “Decentralized Control of Quadrotors in a Leader–Follower Formation,” Avtometriya 53 (1), 26–31 (2017) [Optoelectron., Instrum. Data Process. 53 (1), 21–25 (2017)].

    Google Scholar 

  14. P.-J. Bristeau, F. Callou, D. Vissiere, and N. Petit, “The Navigation and Control Technology Inside the AR.Drone Micro UAV,” in Proc. of the IFAC Volumes, Milano, Italy (Elsevier, 2011), pp. 1477–1484.

    Google Scholar 

  15. M. Quigley, K. Conley, B. P. Gerkey, et al., “ROS: an Opensource Robot Operating System,” in ICRA Workshop on Open Source Software, 2009, Vol. 3, pp. 5.

    Google Scholar 

  16. G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR Workspaces,” in Proc. of the 6th IEEE and ACM Intern. Symp. on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, 2007, pp. 1–10.

    Google Scholar 

  17. J. Kim, M.-S. Kang, and S. Park, “Accurate Modeling and Robust Hovering Control for a Quad-Rotor VTOL Aircraft,” J. Intell. Robotics Syst. 57 (1–4), 9–26 (2010).

    Article  MATH  Google Scholar 

  18. J. Engel, J. Sturm, and D. Cremers, “Accurate Figure Flying with a Quadrocopter Using Onboard Visual and Inertial Sensing,” in Proc. of the Workshop on Visual Control of Mobile Robots (ViCoMoR) at the IEEE/RJS Intern. Conf. on Intelligent Robot Systems (IROS), Vilamoura, Algarve, Portugal, October 11, 2012, pp. 43–48.

    Google Scholar 

  19. S. A. Belokon’, Yu. N. Zolotukhin, K. Yu. Kotov, et al., “Control of Quadrotor Flight with a Parametric Definition of the Motion Trajectory,” in Proc. XII All-Russian Workshop on Control Problems (IPU RAN, Moscow, 2014), pp. 3384–3390 [in Russian].

    Google Scholar 

  20. Reference Book on Radio Electronics. Vol. 3, Ed. by A. A. Kulikovskii (Energiya, Moscow, 1970) [in Russian].

  21. S. A. Belokon’, Yu. A. Zolotukhin, A.S. Mal’tsev, et al., “Control of Flight Parameters of a Quadrotor Vehicle Moving over a Given Trajectory,” Avtometriya 48 (5), 32–41 (2012) [Optoelectron., Instrum. Data Process. 48 (5), 454–461 (2012)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Kotov.

Additional information

Original Russian Text © K.Yu. Kotov, A.A. Nesterov, M.N. Filippov, A.P. Yan, 2017, published in Avtometriya, 2017, Vol. 53, No. 4, pp. 3–10.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, K.Y., Nesterov, A.A., Filippov, M.N. et al. Method of quadrotor flight control in the target tracking problem. Optoelectron.Instrument.Proc. 53, 309–315 (2017). https://doi.org/10.3103/S875669901704001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S875669901704001X

Keywords

Navigation