Skip to main content
Log in

Study of photon statistics using a compound Poisson distribution and quadrature measurements

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

This paper describes the model of a compound Poisson distribution for photon statistics with regard to their bunching in Fock states, thermal states, and others. The method of generating functions is used to calculate the probability distributions, moments, and correlation functions. The parameters of conditional states arising from the subtraction of photons by splitting the beam are determined. The problem of state reconstruction with regard to quadrature quantum measurements is considered. The study is aimed at developing high-precision methods for generating and controlling optical quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Kurochkin, I. I. Ryabtsev, and I. G. Neizvestny, “Quantum. Cryptography and Quantum-Key Distribution with Single Photons,” Mikroelektronika 35 (1), 37–43 (2006) [Russian Microelectronics 35, 31–36 (2006)].

    Google Scholar 

  2. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of Qubits,” Phys. Rev. A 64 (5), 052312 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Řeháček, B. G. Englert, and D. Kaszlikowski, “Minimal Qubit Tomography,” Phys. Rev. A 70 (5), 052321 (2004).

    Article  ADS  Google Scholar 

  4. Yu. I. Bogdanov, G. Brida, M. Genovese, et al., “Statistical Estimation of the Efficiency of Quantum State Tomography Protocols,” Phys. Rev. Lett. 105 (1), 010404 (2010).

    Article  ADS  Google Scholar 

  5. Yu. I. Bogdanov, E. V. Moreva, G. A. Maslennikov, et al., “Polarization States of Four-Dimensional Systems Based on Biphotons,” Phys. Rev. A 73 (6), 063810 (2006).

    Article  ADS  Google Scholar 

  6. Yu. I. Bogdanov, M. V. Chekhova, L. A. Krivitsky, et al., “Statistical Reconstruction of Qutrits,” Phys. Rev. A 70 (4), 042303 (2004).

    Article  ADS  Google Scholar 

  7. Yu. I. Bogdanov, L. A. Krivitsky, and S. P. Kulik, “Statistical Reconstruction of the Quantum States of Three- Level Optical Systems,” Pis’ma v Zhurn. Eksp. Teoret. Fiz. 78 (6), 804–809 (2003) [JETP Letters 78 (6), 352–357 (2003)].

    Google Scholar 

  8. K. Bencheikh, F. Gravier, J. Douady, et al., “Triple Photons: A Challenge in Nonlinear and Quantum Optics,” Comptes Rendus Physique 8 (2), 206–220 (2007).

    Article  ADS  Google Scholar 

  9. N. A. Borshchevskaya, K. G. Katamadze, S. P. Kulik, and M. V. Fedorov, “Three-Photon Generation by Means of Third-Order Spontaneous Parametric Down-Conversion in Bulk Crystals,” Laser Phys. Lett. 12 (11), 115404 (2015).

    Article  ADS  Google Scholar 

  10. J. Leach, B. Jack, J. Romero, et al., “Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables,” Science 329 (5992), 662–665 (2010).

    Article  ADS  Google Scholar 

  11. M. Agnew, J. Leach, M. McLaren, et al., “Tomography of the Quantum State of Photons Entangled in High Dimensions,” Phys. Rev. A 84 (6), 062101 (2011).

    Article  ADS  Google Scholar 

  12. S. S. Straupe, D. P. Ivanov, A. A. Kalinkin, et al., “Angular Schmidt Modes in Spontaneous Parametric Down- Conversion,” Phys. Rev. A 83 (6), 060302 (2011).

    Article  ADS  Google Scholar 

  13. B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Versatile Shaper-Assisted Discretization of Energy-Time Entangled Photons,” New J. Phys. 16 (3), 033017 (2014).

    Article  ADS  Google Scholar 

  14. L. Olislager, E. Woodhead, K. P. Huy, et al., “Creating and Manipulating Entangled Optical Qubits in the Frequency Domain,” Phys. Rev. A 89 (5), 052323 (2014).

    Article  ADS  Google Scholar 

  15. S. L. Braunstein and P. van Loock, “Quantum Information with Continuous Variables,” Rev. Mod. Phys. 77 (2), 513–577 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. U. Leonhardt and H. Paul, “Measuring the Quantum State of Light,” Progr. Quantum Electron. 19 (2), 89–130 (1995).

    Article  ADS  Google Scholar 

  17. A. I. Lvovsky and M. G. Raymer, “Continuous-Variable Optical Quantum-State Tomography,” Rev. Mod. Phys. 81 (1), 299–332 (2009).

    Article  ADS  Google Scholar 

  18. Yu. I. Bogdanov and S. P. Kulik, “The Efficiency of Quantum Tomography Based on Photon Detection,” Laser Phys. Lett. 10 (12), 125202 (2013).

    Article  ADS  Google Scholar 

  19. Yu. I. Bogdanov, G. V. Avosopyants, L. V. Belinskii, K. G. Katamadze, S. P. Kulik, and V. F. Lukichev, “Statistical Reconstruction of Optical Quantum States Based on Mutually Complementary Quadrature Quantum Measurements,” Zh. Eskp. Teoret. Fiz. 150 (2), 246–253 (2016) [JETP 123 (2), 212–218 (2016)].

    Google Scholar 

  20. W. Martienssen and E. Spiller, “Coherence and Fluctuations in Light Beams,” Amer. J. Phys. 32 (12), 919–926 (1964).

    Article  ADS  Google Scholar 

  21. F. T. Arecchi, A. Berné, and P. Bulamacchi, “High-Order Fluctuations in a Single-Mode Laser Field,” Phys. Rev. Lett. 16 (1), 32–35 (1966).

    Article  ADS  Google Scholar 

  22. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation,” Phys. Rev. Lett. 93 (9), 093602 (2004).

    Article  ADS  Google Scholar 

  23. F. Ferri, D. Magatti, A. Gatti, et al., “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94 (18), 183602 (2005).

    Article  ADS  Google Scholar 

  24. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-Photon Imaging with Thermal Light,” Phys. Rev. Lett. 94 (6), 063601 (2005).

    Article  ADS  Google Scholar 

  25. S. Lloyd, “Enhanced Sensitivity of Photodetection Via Quantum Illumination,” Science 321 (5895), 1463–1465 (2008).

    Article  ADS  Google Scholar 

  26. E. D. Lopaeva, I. R. Berchera, I. P. Degiovanni, et al., Experimental realization of quantum illumination,” Phys. Rev. Lett. 110 (15), 153603 (2013).

    Article  ADS  Google Scholar 

  27. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-Light Full-Field Optical Coherence Tomography,” Opt. Lett. 27 (7), 530–532 (2002).

    Article  ADS  Google Scholar 

  28. A. F. Fercher, C. K. Hitzenberger, M. Sticker, et al., “A Thermal Light Source Technique for Optical Coherence Tomography,” Opt. Commun. 185 (1–3), 57–64 (2000).

    Article  ADS  Google Scholar 

  29. I. B. Bobrov, S. S. Straupe, E. V. Kovlakov, and S. P. Kulik, “Schmidt-Like Coherent Mode Decomposition and Spatial Intensity Correlations of Thermal Light,” New J. Phys. 15 (7), 073016 (2013).

    Article  ADS  Google Scholar 

  30. A. Zavatta, V. Parigi, and M. Bellini, “Experimental Nonclassicality of Single-Photon-Added Thermal Light States,” Phys. Rev. A 75 (5), 052106 (2007).

    Article  ADS  Google Scholar 

  31. V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to/from a Light Field,” Science 317 (5846), 1890–1893 (2007).

    Article  ADS  Google Scholar 

  32. A. Zavatta, V. Parigi, M. Kim, and M. Bellini, “Subtracting Photons from Arbitrary Light Fields: Experimental Test of Coherent State Invariance by Single-Photon Annihilation,” New J. Phys. 10 (12), 123006 (2008).

    Article  ADS  Google Scholar 

  33. Yu. I. Bogdanov, N. A. Bogdanova, and V. L. Dshkhunyan, “Statistical Yield Modeling for IC Manufacture: Hierarchical Fault Distributions,” Mikroelektronika 32 (1), 77–88 (2003) [Russian Microelectronics 32 (1), 51-62 (2003)].

    Google Scholar 

  34. W. Feller, Introduction to Probability Theory and Its Applications, Vol. 1 (Wiley, 1950), Vol. 2 (John Wiley & Sons, 1966).

  35. N. Ja. Vilenkin, “Special Functions and the Theory of Group Representations”, in Translations of Mathematical Monographs, Vol. 22 (American Mathematical Society, Providence, 1968).

  36. L. D. Landau and E. M. Lifshitz, Statistical Physics. Part 1 (Pergamon Press, 1959).

  37. F. T. Arecchi, “Measurement of the Statistical Distribution of Gaussian and Laser Sources,” Phys. Rev. Lett. 15 (24), 912–916 (1965).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Bogdanov.

Additional information

Original Russian Text © Yu.I. Bogdanov, N.A. Bogdanova, K.G. Katamadze, G.V. Avosopyants, V.F. Lukichev, 2016, published in Avtometriya, 2016, Vol. 52, No. 5, pp. 71–83.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, Y.I., Bogdanova, N.A., Katamadze, K.G. et al. Study of photon statistics using a compound Poisson distribution and quadrature measurements. Optoelectron.Instrument.Proc. 52, 475–485 (2016). https://doi.org/10.3103/S8756699016050095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699016050095

Keywords

Navigation