Skip to main content
Log in

Negative differential resistance in high-power InGaN/GaN laser diode

  • Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Negative differential resistance in InGaN/GaN ultraviolet laser diodes is demonstrated. Switching between the lower and upper branches of the S-shaped current-voltage characteristic leads to a change in the optical emission power by six orders of magnitude as the current increases from 3 to 15 mA. The occurrence of a negative differential resistance is explained by superlinear injection of charge carriers of the same sign into the high-resistance InGaN quantum well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Taylor, M. Zink, C. Crawford, and C. Armbrust, Blu-ray Disc Demystified (McGraw-Hill Education, New York, 2008).

    Google Scholar 

  2. J. Piprek, “Origin of InGaN/GaN Light-Emitting Diode Efficiency Improvements using Tunnel-Junction- Cascaded Active Regions,” Appl. Phys. Lett. 104 (5), 051118 (2014).

    Article  ADS  Google Scholar 

  3. Y.-K. Kuo, T.-H. Wang, and J.-Y. Chang, “Advantages of Blue InGaN Light-Emitting Diodes with InGaNAlGaN- InGaN Barriers,” Appl. Phys. Lett. 100 (3), 031112 (2012).

    Article  ADS  Google Scholar 

  4. J. Piprek and Z. M. S. Li, “Sensitivity Analysis of Electron Leakage in III-Nitride Light-Emitting Diodes,” Appl. Phys. Lett. 102 (13), 131103 (2013).

    Article  ADS  Google Scholar 

  5. S. M. Sadaf, Y.-H. Ra, H. P. T. Nguyen, et al., “Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes,” Nano Lett. 15 (Is. 10), 6696–6701 (2015).

    Article  ADS  Google Scholar 

  6. N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, et al., “Hopping Transport in the Space-Charge Region of p–n structures with InGaN/GaN QWs as a Source of Excess 1/f Noise and Efficiency drop in LEDs,” Fiz. Tekhn. Poluprovod. 49 (6), 847–855 (2015).

    Google Scholar 

  7. W. Shockley, “The Theory of p–n Junctions in Semiconductors and p–n Junction Transistors,” Bell Syst. Techn. J. 28 (3), 435–489 (1949).

    Article  Google Scholar 

  8. D. Li, H. Zong, W. Yang, et al., “Stimulated Emission in GaN-Based Laser Diodes Far below the Threshold Region,” Opt. Express. 22 (3), 2536–2544 (2014).

    Article  ADS  Google Scholar 

  9. D. Li, W. Yang, L. Feng, et al., “Stimulated Emission Related Anomalous Change of Electrical Parameters at Threshold in GaN-Based Laser Diodes,” Appl. Phys. Lett. 102 (12), 123501 (2013).

    Article  ADS  Google Scholar 

  10. X. Li, Z. S. Liu, D. G. Zhao, et al., “Differential Resistance of GaN-Based Laser Diodes with and without Polarization Effect,” Appl. Opt. 54 (29), 8706–8711 (2015).

    Article  ADS  Google Scholar 

  11. N. G. Galkin, E. A. Chusovitin, D. L. Goroshko et al., “Room Temperature 1.5 μm Light-Emitting Silicon Diode with Embedded β-FeSi2 Nanocrystallites,” Appl. Phys. Lett. 101 (16), 163501 (2012).

    Article  ADS  Google Scholar 

  12. P. P. Paskov, R. Schifano, T. Paskova, et al., “Structural Defect-Related Emissions in Nonpolar a-Plane GaN,” Phys. B: Condensed Matter. 376–377, 473–476 (2006).

    Article  Google Scholar 

  13. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, New York, 2006).

    Book  Google Scholar 

  14. S. V. Bulyarskii, N. S. Grushko, A. I. Somov, and A. V. Lakalin, “Recombination in the Space Charge Region and Its Effect on the Transmittance of Bipolar Transistors,” Fiz. Tekhn. Poluprovod. 31 (9), 1146–1150 (1997).

    Google Scholar 

  15. S. Nakamura, “Current Status and Future Prospects of InGaN-Based Laser Diodes,” JSAP Intern. 1, 5–17 (2000).

    Google Scholar 

  16. Z. Zhong, O. Ambacher, A. Link, et al., “Influence of GaN Domain Size on the Electron Mobility of Two-Dimensional Electron Gases in AlGaN/GaN Heterostructures Determined by X-Ray Reflectivity and Diffraction,” Appl. Phys. Lett. 80 (19), 3521–3523 (2002).

    Article  ADS  Google Scholar 

  17. R. N. Kutt, G. N. Mosina, M. P. Shcheglov, and A. M. Sorokin, “The Defect Structure of AlGaN/GaN Superlattices Grown on Sapphire by the MOCVD method,” Fiz. Tverd. Tela 48 (8), 1491–1497 (2006).

    Google Scholar 

  18. S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science. 281 (5379), 956–961 (1998).

    Article  Google Scholar 

  19. V. A. Sergeev and, A. M. Kodakov, “Calculation and Analysis of Distributions of the Current Density and Temperature over the Area of the InGaN/GaN Structure of High-Power Light-Emitting Diodes,” Fiz. Tekhn. Poluprovod. 44 (2), 230–234 (2010).

    Google Scholar 

  20. N. I. Bochkareva, A. A. Efremov, Yu. T. Rebane, et al., “Nonuniformity of carrier injection and the Degradation of Blue LEDs,” Fiz. Tekhn. Poluprovod. 40 (1), 122–127 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Shamirzaev.

Additional information

Original Russian Text © V.T. Shamirzaev, V.A. Gaisler, T.S. Shamirzaev, 2016, published in Avtometriya, 2016, Vol. 52, No. 5, pp. 31–36.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamirzaev, V.T., Gaisler, V.A. & Shamirzaev, T.S. Negative differential resistance in high-power InGaN/GaN laser diode. Optoelectron.Instrument.Proc. 52, 442–446 (2016). https://doi.org/10.3103/S8756699016050058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699016050058

Keywords

Navigation