Skip to main content
Log in

Analysis of the efficiency of classification of hyperspectral satellite images of natural and man-made areas

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The efficiency of a number of the classical methods of supervised classification of hyperspectral data is estimated by an example of discriminating the types of the underlying surface in natural and man-made areas. The minimum distance, support vector machine, Mahalanobis, and maximum likelihood methods are considered. Particular attention is paid to studying the dependence of the data classification accuracy on the number of spectral features and the way of choosing them in the above-mentioned methods. Experimental results obtained by processing real hyperspectral images of landscapes of various types are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Ostrikov, O. V. Plakhotnikov, and A. V. Kirienko, “Processing of Hyperspectral Data Obtained from Aviation and Space Carriers,” Sovr. Probl. Dist. Zond. Zemli iz Kosmosa 10 (2), 243–251 (2013).

    Google Scholar 

  2. T. H. Chan, A. Ambikapathi, W. K. Ma, and C. Y. Chi, “Robust Affine Set Fitting and Fast Simplex Volume Max-Min for Hyperspectral Endmember Extraction,” IEEE Trans. Geosci. Remote Sensing 51 (7), 3982–3997 (2013).

    Article  ADS  Google Scholar 

  3. K. Cawse-Nicholson, S. B. Damelin, A. Robin, and M. Sears, “Determining the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory,” IEEE Trans. Image Process. 22 (4), 1301–1310 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. M. Borzov, A. O. Potaturkin, and O. I. Potaturkin, “Change Detection in Build-up Areas on the Basis of Structural Features of Satellite Images,” Avtometriya 51 (4), 3–11 (2015) [Optoelectron., Instrum. Data Process. 51 (4), 321–328 (2015)].

    Google Scholar 

  5. S. M. Borzov and O. I. Potaturkin, “Classification of Vegetation Types on the Basis of Hyperspectral Data of Remote Sensing,” Vestnik NGU, Ser. Inform. Tekhnol., No. 4, 13–22 (2014).

    Google Scholar 

  6. O. I. Potaturkin, S. M. Borzov, A. O. Potaturkin, and S. B. Uzilov, “Methods and Technologies of Processing of High-Resolution Multi- and Hyperspectral Data of Remote Sensing,” Vych. Tekhnol. 18 (special issue), 53–60 (2013).

    Google Scholar 

  7. F. A. Kruse, A. B. Lefkoff, J. B. Boardman, et al., “The Spectral Image Processing System (SIPS) — Interactive Visualization and Analysis of Imaging Spectrometer Data,” Remote Sensing of Environment 44 (2–3), 145–163 (1993).

    Article  Google Scholar 

  8. H. Du, C. Chang, H. Ren, et al., “New Hyperspectral Discrimination Measure for Spectral Characterization,” Opt. Eng. 43 (8), 1777–1786 (2004).

    Article  ADS  Google Scholar 

  9. T. Joachims, “Making Large-Scale Support Vector Machine Learning Practical,” in Advances in Kernel Methods — Support Vector Learning, Eds. by B. Schoelkopf, C. J. C. Burges, and A. J. Smola (MIT Press, Cambridge, USA, 1999, pp. 169–184).

    Google Scholar 

  10. J. A. Richards, Remote Sensing Digital Image Analysis (Springer-Verlag, Berlin, 2013, 494 pp.).

    Book  Google Scholar 

  11. A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal,” IEEE Trans. Geosci. Remote Sensing 26 (1), 65–74 (1988).

    Article  ADS  Google Scholar 

  12. A. Plaza, J. A. Benediktsson, J. W. Boardman, et al., “Recent Advances in Techniques for Hyperspectral Image Processing,” Remote Sensing of Environment 113 (Suppl. 1), 110–122 (2009).

    Article  Google Scholar 

  13. V. G. Bondur, “Modern Approaches to Processing Large Fluxes of Hyperspectral and Multispectral Aerospace Information,” Issled. Zemli iz Kosmosa, No. 1, 4–16 (2014).

    Google Scholar 

  14. C. Chen, W. Li, E. W. Tramel, et al., “Spectral-Spatial Preprocessing Using Multihypothesis Prediction for Noise-Robust Hyperspectral Image Classification,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7 (4), 1047–1059 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Borzov.

Additional information

Original Russian Text © S.M. Borzov, A.O. Potaturkin, O.I. Potaturkin, A.M. Fedotov, 2016, published in Avtometriya, 2016, Vol. 52, No. 1, pp. 3–14.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzov, S.M., Potaturkin, A.O., Potaturkin, O.I. et al. Analysis of the efficiency of classification of hyperspectral satellite images of natural and man-made areas. Optoelectron.Instrument.Proc. 52, 1–10 (2016). https://doi.org/10.3103/S8756699016010015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699016010015

Keywords

Navigation