Skip to main content
Log in

Optical Manipulation of Airborne Light-Absorbing Microparticles Using Structured Laser Beams

  • INTERACTION OF LASER RADIATION WITH MATTER
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

It is demonstrated how structured laser beams can be used to implement holographic optical tweezers for trapping and manipulating light-absorbing nano- and microparticles in the air. Two types of structured laser beams are investigated: polygon laser beams and superpositions of the Laguerre–Gauss modes with various carrier frequencies shifted relative to the propagation axis. The polygon laser beams generate arrays of optical bottle-beam traps, and the superpositions of the Laguerre–Gauss modes generate multiple light spots propagating along curved trajectories. The experiments have shown a possibility of optically trapping hundreds and thousands of airborne carbon nanoparticle agglomerations in a cuvette and passively guiding the trapped particles along a curved trajectory. The reported results can be used to develop laser manipulation systems for studying and transporting airborne nano- and microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Forbes, M. de Oliveira, and M. R. Dennis, “Structured light,” Nat. Photonics 15, 253–262 (2021). https://doi.org/10.1038/s41566-021-00780-4

    Article  ADS  Google Scholar 

  2. H. Zhou, N. Hu, X. Su, R. Zhang, H. Q. Song, H. Song, K. Pang, K. Zou, A. Minoofar, B. Lynn, M. Tur, and A. E. Willner, “Experimental demonstration of a 100-Gbit/s 16-QAM free-space optical link using a structured optical “bottle beam” to circumvent obstructions,” J. Lightwave Technol. 40 (10), 3277–3284 (2022). https://doi.org/10.1109/JLT.2022.3161347

    Article  ADS  Google Scholar 

  3. S. N. Khonina, N. L. Kazanskiy, M. A. Butt, and S. V. Karpeev, “Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: A review,” Opto-Electron. Adv. 5 (8), 210127 (2022). https://doi.org/10.29026/oea.2022.210127

    Article  Google Scholar 

  4. A. E. Willner, H. Zhou, X. Su, H. Song, K. Pang, and H. Q. Song, “Utilizing structured modal beams in free-space optical communications for performance enhancement,” IEEE J. Sel. Top. Quantum Electron. 29 (6), 3700213 (2023). https://doi.org/10.1109/JSTQE.2023.3306636

    Article  Google Scholar 

  5. D. Flamm, D. G. Grossmann, M. Sailer, M. Kaiser, F. Zimmermann, K. Chen, M. Jenne, J. Kleiner, J. Hellstern, C. Tillkorn, D. H. Sutter, and M. Kumkar, “Structured light for ultrafast laser micro- and nanoprocessing,” Opt. Eng. 60 (2), 025105 (2021). https://doi.org/10.1117/1.OE.60.2.025105

    Article  ADS  Google Scholar 

  6. A. Zhizhchenko, S. Syubaev, A. Berestennikov, A. V. Yulin, A. Porfirev, A. Pushkarev, I. Shishkin, K. Golokhvast, A. A. Bogdanov, A. A. Zakhidov, A. A. Kuchmizhak, Yu. S. Kivshar, and S. V. Makarov, “Single-mode lasing from imprinted halide-perovskite microdisks,” ACS Nano 13 (4), 4140–4147 (2019). https://doi.org/10.1021/acsnano.8b08948

    Article  Google Scholar 

  7. S. Syubaev, A. Zhizhchenko, O. Vitrik, A. Porfirev, S. Fomchenkov, S. Khonina, S. Kudryashov, and A. Kuchmizhak, “Chirality of laser-printed plasmonic nanoneedles tunable by tailoring spiral-shape pulses,” Appl. Surf. Sci. 470, 526–534 (2019). https://doi.org/10.1016/j.apsusc.2018.11.128

    Article  ADS  Google Scholar 

  8. A. Porfirev, S. Khonina, and A. Kuchmizhak, “Light–matter interaction empowered by orbital angular momentum: Control of matter at the micro- and nanoscale,” Prog. Quantum Electron. 88, 100459 (2023). https://doi.org/10.1016/j.pquantelec.2023.100459

    Article  Google Scholar 

  9. K. A. Forbes and D. Green, “Enantioselective optical gradient forces using 3D structured vortex light,” Opt. Commun. 515, 128197 (2022). https://doi.org/10.1016/j.optcom.2022.128197

    Article  Google Scholar 

  10. E. Otte and C. Denz, “Optical trapping gets structure: Structured light for advanced optical manipulation,” Appl. Phys. Rev. 7, 041308 (2020). https://doi.org/10.1063/5.0013276

    Article  ADS  Google Scholar 

  11. Y. Yang, Y.-X. Ren, M. Chen, Y. Arita, and C. Rosales-Guzmán, “Optical trapping with structured light: A review,” Adv. Photonics 3 (3), 034001 (2021). https://doi.org/10.1117/1.AP.3.3.034001

    Article  ADS  Google Scholar 

  12. S. N. Khonina and A. P. Porfirev, “Harnessing of inhomogeneously polarized Hermite–Gaussian vector beams to manage the 3D spin angular momentum density distribution,” Nanophotonics 11 (4), 697–712 (2022). https://doi.org/10.1515/nanoph-2021-0418

    Article  Google Scholar 

  13. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). https://doi.org/10.1038/nature01935

    Article  ADS  Google Scholar 

  14. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11 (5), 288–290 (1986). https://doi.org/10.1364/OL.11.000288

    Article  ADS  Google Scholar 

  15. S. N. Khonina, A. P. Porfirev, S. G. Volotovskiy, A. V. Ustinov, S. A. Fomchenkov, V. S. Pavelyev, S. Schröter, and M. Duparré, “Generation of multiple vector optical bottle beams,” Photonics 8 (6), 218 (2021). https://doi.org/10.3390/photonics8060218

    Article  Google Scholar 

  16. A. P. Porfirev, S. A. Fomchenkov, D. P. Porfiriev, S. N. Khonina, and S. V. Karpeev, “Multi-plane photophoretic trapping of airborne particles with a multi-linear optical trap,” Optik 271, 170118 (2022). https://doi.org/10.1016/j.ijleo.2022.170118

    Article  ADS  Google Scholar 

  17. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011). https://doi.org/10.1038/nphoton.2011.81

    Article  ADS  Google Scholar 

  18. R. V. Skidanov, S. N. Khonina, and A. A. Morozov, “Optical rotation of microparticles in hypergeometric beams formed by diffraction optical elements with multilevel microrelief,” J. Opt. Technol. 80 (10), 585–589 (2013). https://doi.org/10.1364/JOT.80.000585

    Article  Google Scholar 

  19. R. V. Skidanov, A. P. Porfirev, and S. V. Ganchevskaya, “Manipulation of micro-objects using linear traps generated by vortex axicons,” Comput. Opt. 38 (4), 717–721 (2014). https://doi.org/10.18287/0134-2452-2014-38-4-717-721

    Article  ADS  Google Scholar 

  20. J. A. Rodrigo and T. Alieva, “Freestyle 3D laser traps: Tools for studying light-driven particle dynamics and beyond,” Optica, 2 (9), 812–815 (2015). https://doi.org/10.1364/OPTICA.2.000812

    Article  ADS  Google Scholar 

  21. J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5, 12086 (2015). https://doi.org/10.1038/srep12086

    Article  ADS  Google Scholar 

  22. S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107 (20), 203602 (2011). https://doi.org/10.1103/PhysRevLett.107.203602

    Article  ADS  Google Scholar 

  23. M. H. Rosen and C. Orr, Jr., “The photophoretic force,” J. Colloid Sci. 19 (1), 50–60 (1964). https://doi.org/10.1016/0095-8522(64)90006-6

    Article  Google Scholar 

  24. V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nat. Photonics 8, 846–850 (2014). https://doi.org/10.1038/nphoton.2014.242

    Article  ADS  Google Scholar 

  25. J. Lin, A. G. Hart, and Y.-Q. Li, “Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force,” Appl. Phys. Lett. 106, 171906 (2015). https://doi.org/10.1063/1.4919533

    Article  ADS  Google Scholar 

  26. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7 (6), 839–854 (2013). https://doi.org/10.1002/lpor.201200058

    Article  ADS  Google Scholar 

  27. S. N. Khonina, S. A. Degtyarev, A. V. Ustinov, and A. P. Porfirev, “Metalenses for the generation of vector Lissajous beams with a complex Poynting vector density,” Opt. Express 29 (12), 18634–18645 (2021). https://doi.org/10.1364/OE.428453

    Article  ADS  Google Scholar 

  28. J. Wang and Y. Liang, “Generation and detection of structured light: A review,” Front. Phys. 9, 688284 (2021). https://doi.org/10.3389/fphy.2021.688284

    Article  Google Scholar 

  29. Q.-H. Wang, P.-N. Ni, Y.-Y. Xie, Q. Kan, P.-P. Chen, P. Fu, J. Deng, T.-L. Jin, H.-D. Chen, H. W. H. Lee, C. Xu, and P. Genevet, “On-chip generation of structured light based on metasurface optoelectronic integration,” Laser Photonics Rev. 15 (3), 2000385 (2021). https://doi.org/10.1002/lpor.202000385

    Article  ADS  Google Scholar 

  30. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: The optical bottle beam,” Opt. Lett. 25 (4), 191–193 (2000). https://doi.org/10.1364/OL.25.000191

    Article  ADS  Google Scholar 

  31. V. Pavelyev, V. Osipov, D. Kachalov, S. Khonina, W. Cheng, A. Gaidukeviciute, and B. Chichkov, “Diffractive optical elements for the formation of “light bottle” intensity distributions,” Appl. Opt. 51 (18), 4215–4218 (2012). https://doi.org/10.1364/AO.51.004215

    Article  ADS  Google Scholar 

  32. A. P. Porfirev and R. V. Skidanov, “Manipulation of light-absorbing particles in air with optical bottle arrays,” Comput. Opt. 38 (4), 722–726 (2014). https://doi.org/10.18287/0134-2452-2014-38-4-722-726

    Article  ADS  Google Scholar 

  33. S. N. Khonina, A. V. Ustinov, S. I. Kharitonov, S. A. Fomchenkov, and A. P. Porfirev, “Optical bottle shaping using axicons with amplitude or phase apodization,” Photonics 10 (2), 200 (2023). https://doi.org/10.3390/photonics10020200

    Article  Google Scholar 

  34. A. P. Porfirev and R. V. Skidanov, “A simple method of the formation nondiffracting hollow optical beams with intensity distribution in form of a regular polygon contour,” Comput. Opt. 38 (2), 243–248 (2014). https://doi.org/10.18287/0134-2452-2014-38-2-243-248

    Article  ADS  Google Scholar 

  35. Y. Zhang, F. Dong, K. Qian, Q. Zhang, W. Chu, X. Ma, and X. Wu, “Study on evolving phases of accelerating generalized polygon beams,” Opt. Express 24 (5), 5300–5310 (2016). https://doi.org/10.1364/OE.24.005300

    Article  ADS  Google Scholar 

  36. Y. Shen, Z. Wan, Y. Meng, X. Fu, and M. Gong, “Polygonal vortex beams,” IEEE Photonics J. 10 (4), 1503016 (2018). https://doi.org/10.1109/JPHOT.2018.2858845

    Article  Google Scholar 

  37. T. Xia, S. Cheng, W. Yu, and S. Tao, “Tailorable polygon-like beams generated by modified spiral petal-like zone plates,” Results Phys. 21, 103823 (2021). https://doi.org/10.1016/j.rinp.2021.103823

    Article  Google Scholar 

  38. A. R. Skidanova, “Modeling the propagation of polygon beams,” Proc. 2022 VIII Int. Conf. on Information Technology and Nanotechnology (ITNT), Samara, Russian Federation, May 23–27, 2022 (IEEE, 2022). https://doi.org/10.1109/ITNT55410.2022.9848565

  39. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60 (9), 1168–1177 (1970). https://doi.org/10.1364/JOSA.60.001168

    Article  ADS  Google Scholar 

  40. R. Grella, “Fresnel propagation and diffraction and paraxial wave equation,” J. Opt. 13 (6), 367–374 (1982). https://doi.org/10.1088/0150-536X/13/6/006

    Article  ADS  Google Scholar 

  41. D. P. Kelly, “Numerical calculation of the Fresnel transform,” J. Opt. Soc. Am. A 31 (4), 755–764 (2014). https://doi.org/10.1364/JOSAA.31.000755

    Article  ADS  Google Scholar 

  42. A. P. Porfirev, A. B. Dubman, and D. P. Porfiriev, “Demonstration of a simple technique for controllable revolution of light-absorbing particles in air,” Opt. Lett. 45 (6), 1475–1478 (2020). https://doi.org/10.1364/OL.386907

    Article  ADS  Google Scholar 

  43. A. P. Porfirev, “Laser manipulation of airborne microparticles behind non-transparent obstacles with the help of circular Airy beams,” Appl. Opt. 60 (3), 670–675 (2021). https://doi.org/10.1364/AO.409566

    Article  ADS  Google Scholar 

  44. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17 (7), 5743–5757 (2009). https://doi.org/10.1364/OE.17.005743

    Article  ADS  Google Scholar 

  45. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: Theory versus experiment,” Opt. Express 17 (10), 8201–8211 (2009). https://doi.org/10.1364/OE.17.008201

    Article  ADS  Google Scholar 

  46. A. P. Porfirev, “Airy beams for laser manipulation of airborne light-absorbing particles,” Proc. SPIE 11846, 118460N (2022). https://doi.org/10.1117/12.2587674

    Article  Google Scholar 

  47. I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36 (10), 1890–1892 (2011). https://doi.org/10.1364/OL.36.001890

    Article  ADS  Google Scholar 

  48. S. N. Khonina, “Specular and vortical Airy beams,” Opt. Commun. 284 (19), 4263–4271 (2011). https://doi.org/10.1016/j.optcom.2011.05.068

    Article  ADS  Google Scholar 

  49. A. O. Frolov, A. V. Ustinov, and S. N. Khonina, “Changing the trajectory of Airy beam sets with spatial carriers,” Comput. Opt. 46 (5), 724–732 (2022). https://doi.org/10.18287/2412-6179-CO-1139

    Article  Google Scholar 

  50. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36 (15), 2883–2885 (2011). https://doi.org/10.1364/OL.36.002883

    Article  ADS  Google Scholar 

  51. Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Opt. Express 21 (20), 24413–24421 (2013). https://doi.org/10.1364/OE.21.024413

    Article  ADS  Google Scholar 

  52. L. Song, Z. Yang, S. Zhang, and X. Li, “Dynamics of rotating Laguerre–Gaussian soliton arrays,” Opt. Express 27 (19), 26331–26345 (2019). https://doi.org/10.1364/OE.27.026331

    Article  ADS  Google Scholar 

  53. S. N. Khonina and A. P. Porfirev, “Clusters of rotating beams with autofocusing and transformation properties generated by a spatial light modulator,” Appl. Phys. B 129, 50 (2023). https://doi.org/10.1007/s00340-023-07994-0

    Article  ADS  Google Scholar 

  54. V. V. Kotlyar, V. A. Soifer, and S. N. Khonina, “Rotation of multimode Gauss–Laguerre light beams in free space,” Tech. Phys. Lett. 23 (9), 657–658 (1997). https://doi.org/10.1134/1.1261648

    Article  ADS  Google Scholar 

  55. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, M. Honkanen, J. Lautanen, and J. Turunen, “Generation of rotating Gauss–Laguerre modes with binary-phase diffractive optics,” J. Mod. Opt. 46 (2), 227–238 (1999). https://doi.org/10.1080/09500349908231267

    Article  ADS  Google Scholar 

  56. S. N. Khonina, A. P. Porfirev, S. G. Volotovskiy, A. V. Ustinov, and S. V. Karpeev, “Simple method of light field calculation for shaping of 3D light curves,” Photonics 10 (8), 941 (2023).https://doi.org/10.3390/photonics10080941

  57. Z. Zhang, D. Cannan, J. Liu, P. Zhang, D. N. Christodoulides, and Z. Chen, “Observation of trapping and transporting air-borne absorbing particles with a single optical beam,” Opt. Express 20 (15), 16212–16217 (2012).https://doi.org/10.1364/OE.20.016212

  58. A. Porfirev, “Optical mill”—A tool for the massive transfer of airborne light-absorbing particles,” Appl. Phys. Lett. 115, 201103 (2019). https://doi.org/10.1063/1.5125671

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-12-00041 (in part of particle trapping), and within the State Assignment of NRC “Kurchatov Institute” (in part of laser beam generation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Porfirev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Potapov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porfirev, A.P., Khonina, S.N., Skidanova, A.R. et al. Optical Manipulation of Airborne Light-Absorbing Microparticles Using Structured Laser Beams. Phys. Wave Phen. 32, 83–92 (2024). https://doi.org/10.3103/S1541308X24700031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X24700031

Keywords:

Navigation