Skip to main content
Log in

Acoustic Control of Polarization in a Spintronic THz Emitter

  • TERAHERTZ SPECTROSCOPY
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Stroboscopic control of polarization of THz radiation generated by femtosecond laser pulses in a spintronic source under acoustic resonance is investigated using numeric simulation methods. A possibility of changing the polarization direction of THz pulses by controlling the delay time between the acoustic oscillation triggering pulses and the laser pumping pulses is demonstrated with a composite multiferroic in the form of a TbCo2/FeCo magnetostrictive intermetallic heterostructure on a ferroelectric lead magnesium niobate–lead titanate (PMN-PT) substrate. It is shown that excitation of resonant oscillations by an alternating voltage of 0.15 V can allow controlling THz polarization in the range of up to 54° by stepless variation and up to 78° by stepped variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016). https://doi.org/10.1038/NPHOTON.2016.91

    Article  ADS  Google Scholar 

  2. J.-A. Fülöp, S. Tzortzakis, and T. Kampfrath, “Laser-driven strong-field terahertz sources,” Adv. Opt. Mater. 8 (3), 1900681 (2019). https://doi.org/10.1002/adom.201900681

    Article  Google Scholar 

  3. D. Khusyainov, S. Ovcharenko, M. Gaponov, A. Buryakov, A. Klimov, N. Tiercelin, P. Pernod, V. Nozdrin, E. Mishina, A. Sigov, and V. Preobrazhensky, “Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure,” Sci. Rep. 11, 697 (2021). https://doi.org/10.1038/s41598-020-80781-5

    Article  Google Scholar 

  4. P. Koleják, G. Lezier, K. Postava, J.-F. Lampin, N. Tiercelin, and M. Vanwolleghem, “360° polarization control of terahertz spintronic emitters using uniaxial FeCo/TbCo2/FeCo trilayers,” ACS Photonics 9 (4), 1274–1285 (2022). https://doi.org/10.1021/acsphotonics.1c01782

    Article  Google Scholar 

  5. G. Lezier, P. Koleják, J.-F. Lampin, K. Postava, M. Vanwolleghem, and N. Tiercelin, “Fully reversible magnetoelectric voltage controlled THz polarization rotation in magnetostrictive spintronic emitters on PMN-PT,” Appl. Phys. Lett. 120 (15), 152404 (2022). https://doi.org/10.1063/5.0080372

    Article  ADS  Google Scholar 

  6. H. Cheng, Q. Huang, H. He, Z. Zhao, H. Sun, Q. Wu, Z. Jiang, J. Wang, H. Huang, Z. Fu, and Y. Lu, “Giant electrical modulation of terahertz emission in Pb(Mg1/3Nb2/3)0.7Ti0.3O3/Co–Fe–B/Pt structure,” Phys. Rev. Appl. 16 (5), 054011 (2021). https://doi.org/10.1103/PhysRevApplied.16.054011

    Article  ADS  Google Scholar 

  7. D. Khusyainov, S. Ovcharenko, A. Buryakov, A. Klimov, P. Pernod, V. Nozdrin, E. Mishina, A. Sigov, V. Preobrazhensky, and N. Tiercelin, “Composite multiferroic terahertz emitter: Polarization control via an electric field,” Phys. Rev. Appl. 17 (4), 044025 (2022). https://doi.org/10.1103/PhysRevApplied.17.044025

    Article  ADS  Google Scholar 

  8. F. Wang, L. Luo, D. Zhou, X. Zhao, and H. Luo, “Complete set of elastic, dielectric, and piezoelectric constants of orthorhombic 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal,” Appl. Phys. Lett. 90 (21), 212903 (2007). https://doi.org/10.1063/1.2743393

    Article  ADS  Google Scholar 

  9. A. Klimov, N. Tiercelin, Y. Dusch, S. Giordano, T. Mathurin, P. Pernod, V. Preobrazhensky, A. Churbanov, and S. Nikitov, “Magnetoelectric write and read operations in a stress-mediated multiferroic memory cell,” Appl. Phys. Lett. 110 (22), 222401 (2017). https://doi.org/10.1063/1.4983717

    Article  ADS  Google Scholar 

  10. Y. Dusch, N. Tiercelin, A. Klimov, S. Giordano, V. Preobrazhensky, and P. Pernod, “Stress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor,” J. Appl. Phys. 113 (17), 17C719 (2013). https://doi.org/10.1063/1.4795440

  11. L. D. Landau and I. M. Khalatnikov, “On the anomalous absorption of sound near the points of phase transition of the second kind,” Dokl. Akad. Nauk SSSR 96 (3), 469–472 (1954) [in Russian].

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 20-12-00276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Krutyansky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preobrazhensky, V.L., Krutyansky, L.M. Acoustic Control of Polarization in a Spintronic THz Emitter. Phys. Wave Phen. 30, 265–269 (2022). https://doi.org/10.3103/S1541308X22040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22040069

Keywords:

Navigation