Skip to main content
Log in

Application of Laser Polarimetric Scatterometry in the Study of Water-Based Multicomponent Bioorganic Systems on the Example of Cow Milk

  • ELECTROMAGNETIC PROPERTIES OF AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The applicability of laser polarimetric scatterometry in the analysis of the dispersed composition of water-based multicomponent bioorganic systems has been investigated experimentally using cow milk samples with different fat contents before and after dilution with water. It is shown that the procedure of volume dilution with water makes it possible to determine simultaneously the fat and casein contents in milk on the basis of the angular dependences of light scattering matrix. The empirical dependence of scattering-matrix elements on the fat percentage in milk is revealed. The size distributions of fat and casein particles in the investigated milk samples has been obtained by solving the inverse problem for the measured scattering matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Diaspro, G. Radicchi, and C. Nicolini, “Polarized light scattering: A biophysical method for studying bacterial cells,” IEEE Trans. Biomed. Eng. 42 (10), 1038–1042 (1995). https://doi.org/10.1109/10.464379

    Article  Google Scholar 

  2. B. V. Bronk, Z. Z. Li, and J. Czégé, “Polarized light scattering as a rapid and sensitive assay for metal toxicity to bacteria,” J. Appl. Toxicol. 21 (2), 107–113 (2001). https://doi.org/10.1002/jat.730

    Article  Google Scholar 

  3. N. F. Bunkin, A. V. Shkirin, B. W. Ninham, S. N. Chirikov, L. L. Chaikov, N. V. Penkov, V. A. Kozlov, and S. V. Gudkov, “Shaking-induced aggregation and flotation in immunoglobulin dispersions: Differences between water and water–ethanol mixtures,” ACS Omega 5 (24), 14689–14701 (2020). https://doi.org/10.1021/acsomega.0c01444

    Article  Google Scholar 

  4. N. F. Bunkin, A. P. Glinushkin, A. V. Shkirin, D. N. Ignatenko, S. N. Chirikov, I. V. Savchenko, V. P. Meshalkin, G. N. Samarin, A. Maleki, and V. P. Kalinitchenko, “Identification of organic matter dispersions based on light scattering matrices focusing on soil organic matter management,” ACS Omega 5 (51), 33214–33224 (2020). https://doi.org/10.1021/acsomega.0c04906

    Article  Google Scholar 

  5. O. R. Juárez-Rivera, R. A. Mauricio-Sánchez, K. Järrendahl, H. Arwin, and A. Mendoza-Galván, “Shear-coated linear birefringent and chiral cellulose nanocrystal films prepared from non-sonicated suspensions with different storage time,” Nanomaterials 11 (9), 2239 (2021). https://doi.org/10.3390/nano11092239

    Article  Google Scholar 

  6. J. Zallat and M. Ph. Stoll, “Polarized bidirectional scattering by bare soils,” J. Opt. A: Pure Appl. Opt. 2 (3), 169–178 (2000). https://doi.org/10.1088/1464-4258/2/3/302

    Article  ADS  Google Scholar 

  7. H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X. H. Hu, “Angle-resolved Mueller matrix study of light scattering by B‑cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12 (3), 034032 (2007). https://doi.org/10.1117/1.2749730

    Article  ADS  Google Scholar 

  8. K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7 (3), 291–299 (2002). https://doi.org/10.1117/1.1483880

    Article  ADS  Google Scholar 

  9. J. Liu, Q. Zhang, Y. Huo, J. Wang, and Y. Zhang, “An experimental study on light scattering matrices for Chinese loess dust with different particle size distributions,” Atmos. Meas. Tech. 13, 4097–4109 (2020). https://doi.org/10.5194/amt-13-4097-2020

    Article  Google Scholar 

  10. S. N. Chirikov and A. V. Shkirin, “Determination of the disperse composition of a PbO suspension containing aggregates of particles of lamellar shape by the laser-polarimetry method,” Opt. Spectrosc. 124 (4), 575–584 (2018). https://doi.org/10.1134/S0030400X18040057

    Article  ADS  Google Scholar 

  11. Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transfer 168, 158–169 (2016). https://doi.org/10.1016/j.jqsrt.2015.09.017

    Article  ADS  Google Scholar 

  12. C. L. Crofcheck, J. Wade, J. N. Swamy, M. M. Aslan, and M. P. Mengüç, “Effect of fat and casein particles in milk on the scattering of elliptically polarized light,” Trans. ASAE 48 (3), 1147–1155 (2005). https://doi.org/10.13031/2013.18488

    Article  Google Scholar 

  13. D. E. Burmistrov, D. Y. Pavkin, A. R. Khakimov, D. N. Ignatenko, E. A. Nikitin, V. N. Lednev, Y. P. Lobachevsky, S. V. Gudkov, and A. V. Zvyagin, “Application of optical quality control technologies in the dairy industry: An overview,” Photonics 8 (12), 551 (2021). https://doi.org/10.3390/photonics8120551

    Article  Google Scholar 

  14. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Dover, Mineola, 2012).

    MATH  Google Scholar 

  15. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  16. A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, Berlin–Heidelberg, 2006).

  17. J. Nocedal and S. J. Wright, Numerical Optimization (Springer, New York, 1999).

    Book  Google Scholar 

  18. N. F. Bunkin, A. V. Shkirin, V. A. Kozlov, and A. V. Starosvetskiy, “Laser scattering in water and aqueous solutions of salts,” Proc. SPIE 7376, 73761D (2010). https://doi.org/10.1117/12.871150

    Article  ADS  Google Scholar 

  19. B. Aernouts, R. Van Beers, R. Watté, T. Huybrechts, J. Lammertyn, and W. Saeys, “Visible and near-infrared bulk optical properties of raw milk,” J. Dairy Sci. 98 (10), 6727–6738 (2015). https://doi.org/10.3168/jds.2015-9630

    Article  Google Scholar 

  20. J. Jönsson and E. Berrocal, “Multi-scattering software: Part I: Online accelerated Monte Carlo simulation of light transport through scattering media,” Opt. Express 28 (25), 37612–37638 (2020). https://doi.org/10.1364/OE.404005

    Article  ADS  Google Scholar 

  21. G. O. Regnima, T. Koffi, O. Bagui, A. Kouacou, E. Kristensson, J. T. Zoueu, and E. Berrocal, “Quantitative measurements of turbid liquids via structured laser illumination planar imaging where absorption spectrophotometry fails,” Appl. Opt. 56 (13), 3929–3938 (2017). https://doi.org/10.1364/AO.56.003929

    Article  ADS  Google Scholar 

  22. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, Chap. 2.7: Monte Carlo Simulation (SPIE, Bellingham, 2015). https://doi.org/10.1117/3.1003040

  23. H. Singh and S. Gallier, “Nature’s complex emulsion: The fat globules of milk,” Food Hydrocolloids 68, 81–89 (2017). https://doi.org/10.1016/j.foodhyd.2016.10.011

    Article  Google Scholar 

  24. S. Couvreur, C. Hurtaud, P. G. Marnet, P. Faverdin, and J. L. Peyraud, “Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet,” J. Dairy Sci. 90 (1), 392–403 (2007). https://doi.org/10.3168/jds.S0022-0302(07)72640-1

    Article  Google Scholar 

  25. C. G. De Kruif, T. Huppertz, V. S. Urban, and A. V. Petukhov, “Casein micelles and their internal structure,” Adv. Colloid Interface Sci. 171172, 36–52 (2012). https://doi.org/10.1016/j.cis.2012.01.002

  26. D. J. McMahon and B. S. Oommen, “Supramolecular structure of the casein micelle,” J. Dairy Sci. 91 (5), 1709–1721 (2008). https://doi.org/10.3168/jds.2007-0819

    Article  Google Scholar 

  27. K. K. Gorbatova, Chemistry and Physics of Milk: Manual for Higher Education Institutions (GIORD, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  28. I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968).

    Book  Google Scholar 

  29. G. G. Amador-Espejo, A. Suàrez-Berencia, B. Juan, M. E. Bárcenas, and A. J. Trujillo, “Effect of moderate inlet temperatures in ultra-high-pressure homogenization treatments on physicochemical and sensory characteristics of milk,” J. Dairy Sci. 97 (2), 659–671 (2014). https://doi.org/10.3168/jds.2013-7245

    Article  Google Scholar 

  30. B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, Mineola, 2000).

    Google Scholar 

Download references

Funding

This work was supported by a grant of the Ministry of Science and Higher Education of the Russian Federation for large scientific projects in priority areas of scientific and technological development (grant no. 075-15-2020-774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shkirin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkirin, A.V., Ignatenko, D.N., Chirikov, S.N. et al. Application of Laser Polarimetric Scatterometry in the Study of Water-Based Multicomponent Bioorganic Systems on the Example of Cow Milk. Phys. Wave Phen. 30, 186–195 (2022). https://doi.org/10.3103/S1541308X22030116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22030116

Keywords:

Navigation