Skip to main content
Log in

Selective and Continual Thermal Emission of Polycrystalline Yb2O3, Eu2O3, Ruby, and Sapphire

  • LASER CRYSTAL SPECTROSCOPY
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Spectra of thermal emission in polycrystalline Yb2O3, Eu2O3, ruby, and sapphire at resonant laser, laser-thermal, and gas-kinetic excitation are experimentally studied. Spectra of oxides in the visible and near IR regions are superposition of selective and continual spectra. Intensity of selective spectra at transitions between thermally populated electron-vibrational states of the structure and impurity ions is determined by the relation between radiative and nonradiative relaxation. It is found out that continual emission is not related to the chemical composition and micro- and electron structure of the investigated materials, and the temperature dependence of the spectra under thermodynamic equilibrium is described by the Planck function. The results are important for understanding the nature of thermal emission of oxides and for thermometry of hypersonic aerodynamic and thermophotovoltaic materials under extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. N. Magunov, Spectral Pyrometry (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  2. V. M. Marchenko, L. D. Iskhakova, A. V. Kir’yanov, V. M. Mashinsky, N. M. Karatun, and E. M. Sholo-khov, “Luminescence and selective heat radiation of Yb2O3 upon the resonant and thermal laser excitation,” Laser Phys. 22 (1), 177–183 (2012). https://doi.org/10.1134/S1054660X11240029

    Article  Google Scholar 

  3. V. M. Marchenko, and Yu. A. Shakir, “Temperature dependence of selective emission intensity of the R 1 line upon laser–thermal heating of ruby,” Opt. Spectrosc. 128 (6), 695–697 (2020). https://doi.org/10.1134/S0030400X20060144

    Article  ADS  Google Scholar 

  4. D. D. Ragan, R. Gustavsen, and D. Schiferl, “Calibration of the ruby R 1 and R 2 fluorescence shifts as a function of temperature from 0 to 600 K,” J. Appl. Phys. 72 (12), 5539–5544 (1992). https://doi.org/10.1063/1.351951

    Article  ADS  Google Scholar 

  5. H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and Sh. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39 (4R), 1957–1961 (2000). https://doi.org/10.1143/JJAP.39.1957

    Article  ADS  Google Scholar 

  6. N. Nakagawa, H. Ohtsubo, Y. Wak, and H. Yugami, “Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics,” J. Eur. Ceram. Soc. 25 (8), 1285–1291 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.01.031

    Article  Google Scholar 

  7. G. A. Bufetova, S. Ya. Rusanov, V. F. Seregin, Yu. N. Pyrkov, V. A. Kamynin, and V. B. Tsvetkov, “Temperature distribution across the growth zone of sapphire(Al2O3) and yttrium–aluminum garnet (YAG) single crystal fibers,” J. Cryst. Growth. 433, 54–58 (2016). https://doi.org/10.1016/j.jcrysgro.2015.06.010

    Article  ADS  Google Scholar 

  8. M. Plank, Introduction to Theoretical Physics, Vol. 5: Theory of Heat (Macmillan, London, 1949).

  9. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Pergamon, London, 1960).

  10. B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy. 105, 430 (2013). https://doi.org/10.1016/j.apenergy.2012.12.067

    Article  Google Scholar 

  11. P. B. Oliete, A. Orera, M. L. Sanjuàn, and R. I. Merino, “Selective thermal emission of directionally solidified Al2O3/Y3–xErxAl5O12 eutectics: Influence of the microstructure, temperature and erbium content,” Sol. Energy Mater. Sol. Cells. 174, 460–468 (2018). https://doi.org/10.1016/j.solmat.2017.09.031

    Article  Google Scholar 

  12. E. Sakr and P. Bermel, “Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters,” Opt. Express. 25 (20), A880–A895 (2017). https://doi.org/10.1364/OE.25.00A880

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Marchenko.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenko, V.M. Selective and Continual Thermal Emission of Polycrystalline Yb2O3, Eu2O3, Ruby, and Sapphire. Phys. Wave Phen. 29, 199–203 (2021). https://doi.org/10.3103/S1541308X21030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21030109

Keywords:

Navigation