Skip to main content
Log in

Investigation of the Interaction of Water Molecules with the Surface of a Quartz Tube Using Diode Laser Spectroscopy

  • Laser Spectroscopy
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The behavior of water molecules at the density of 1013 to 1016 cm−3 in a fused silica tube at room temperature has been studied. The number of molecules in the gas phase initially injected in the tube is comparable to the number of molecules adsorbed on the walls of the pre-evacuated tube. The concentrations of molecules in the gas phase were measured by diode laser spectroscopy with an external optical cavity. An off-axis alignment of the cavity with a large set number of transverse modes was used, which made it possible to measure the concentrations of molecules with narrow absorption profiles, temporal resolution of 5 s, and the accuracy better than ±5%. A strong interaction of molecules with the walls was observed. The time behavior of molecules in the gas phase both after the injection of gas into the vacuum volume and after its rapid evacuation under dynamic equilibrium between capture and desorption processes is non-exponential. The characteristic time of these processes 10−11 to 102 s depends on the redistribution of molecules between the gas and the near-wall layers, which is governed by the physical and chemical adsorption mechanisms. The theoretical results on the kinetics of the processes are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. McBain, “Der Mechanismus der Adsorption (“Sorption”) von Wasserstoff durch Kohlenstoff,” Z. Phys. Chem. 68U(1), 471 (1909) [DOI: https://doi.org/10.1515/zpch-1909-6831].

    Article  Google Scholar 

  2. J.H. deBoer, The Dynamical Character of Adsorption (Clarendon Press, Oxford, London, 1953).

    Book  Google Scholar 

  3. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, N.Y., 1978).

    Google Scholar 

  4. S. Ross and J.P. Oliver, On Physical Adsorption (Wiley, N.Y., 1964).

    Google Scholar 

  5. L.N. Rozanov, Vacuum Technique (Taylor and Francis, London, N.Y., 2002).

    Google Scholar 

  6. L.N. Rozanov, “The Water Outgassing Rate of Internal Surfaces of Vacuum Systems,” J. Phys.: Conf. Ser. 729, 012001 (2016) [DOI: https://doi.org/10.1088/1742-6596/729/1/012001].

    Google Scholar 

  7. D.S. Sajko, V.V. Ganzha, S.A. Titov, A.V. Kostjuchenko, and S.A. Soldatenko, “Examination of Adsorption of Water on Crystal Vibrators. Experiment and a Physical Analog of Process,” Cond. Matter Interphas. 10(3), 249 (2008) [in Russian].

    Google Scholar 

  8. I. Sorokin, I. Vizgalov, K. Gutorov, and F. Podolyako, “Concerning Feasibility of Water Microleakage Diagnostics by Auto-oscillating Discharge,” Phys. Proc. 71, 116 (2015) [DOI: https://doi.org/10.1016/j.phpro.2015.08.324].

    Article  ADS  Google Scholar 

  9. ITER Final Design Report No. G31 DDD 14 01_07-19 W0.1 (ITER Organization, St. Paul-lez-Durance, 2001). Sec. 3.1.

  10. A.V. Bernatskiy, V.N. Ochkin, R.N. Bafoev, and A.B. Antipenkov, “Dynamics of the Water Molecule Density in a Discharge Chamber Filled with a Low-Pressure Humid Gas,” Plasma Phys. Rep. 42(10), 990 (2016) [DOI: https://doi.org/10.1134/S1063780X16100019].

    Article  ADS  Google Scholar 

  11. A.V. Bernatskiy, V.N. Ochkin, O.N. Afonin, and A.B. Antipenkov, “Measurements of the Number Density of Water Molecules in Plasma by Using a Combined Spectral—Probe Method,” Plasma Phys. Rep. 41(9), 705 (2015) [DOI: https://doi.org/10.1134/S1063780X15090032].

    Article  ADS  Google Scholar 

  12. A.V. Bernatskiy, V.N. Ochkin, I.V. Kochetov, “Multi-spectral Actinometry of Water and Water Derivative Molecules in Moist, Inert Gas Discharge Plasmas,” J. Phys. D: Appl. Phys. 49, 395204 (2016) [DOI: https://doi.org/10.1088/0022-3727/49/39/395204].

    Article  Google Scholar 

  13. A.V. Bernatskiy and V.N. Ochkin, “Detection ofWater Molecules in Inert Gas Based Plasma by the Ratios of Atomic Spectral Lines,” Plasma Sources Sci. Technol. 26, 015002 (2017) [DOI: https://doi.org/10.1088/0963-0252/26/1/015002].

    Article  ADS  Google Scholar 

  14. S.N. Andreev, V.N. Ochkin, V.V. Zakharov, and S.Yu. Savinov, “Plasma-Chemical CO2 Decomposition in a Non-Self-Sustained Discharge with a Controlled Electronic Component of Plasma,” Spectrochim. Acta. Pt. A: Mol. Biomol. Spectrosc. 60(14), 3361 (2004) [DOI: https://doi.org/10.1016/j.saa.2004.01.034].

    Article  ADS  Google Scholar 

  15. I.V. Nikolaev, V.N. Ochkin, M.V. Spiridonov, and S.N. Tskhai, “Diode Ring-Down Spectroscopy without Intensity Modulation in an Off-Axis Multipass Cavity,” Spectrochim. Acta. Pt. A: Mol. Biomol. Spectrosc. 66(4–5), 832 (2007) [DOI: https://doi.org/10.1016/j.saa.2006.11.008].

    Article  ADS  Google Scholar 

  16. V.N. Ochkin, S.Yu. Savinov, S.N. Tskhai, U. Czarnetzki, V.S. von der Gathen, and H.F. Dobele, “Nonlinear Optical Techniques for Plasma Diagnostics,” IEEE Trans. Plasma Sc. 26(5), 1502 (1998) [DOI: https://doi.org/10.1109/27.736047].

    Article  ADS  Google Scholar 

  17. E.V. Parkevich, G.V. Ivanenkov, M.A. Medvedev, A.I. Khirianova, A.S. Selyukov, A.V. Agafonov, A.R. Mingaleev, T.A. Shelkovenko, and S.A. Pikuz, “Mechanisms Responsible for the Initiation of a Fast Breakdown in an Atmospheric Discharge,” Plasma Sources Sci. Technol. 27(11), 11LT01 (2018) [DOI: https://doi.org/10.1088/1361-6595/aaebdb].

    Article  Google Scholar 

  18. E.V. Parkevich, M.A. Medvedev, A.S. Selyukov, A.I. Khirianova, A.R. Mingaleev, S.N. Mishin, S.A. Pikuz, and A.V. Oginov, “Setup Involving Multi-Frame Laser Probing for Studying Fast Plasma Formation with High Temporal and Spatial Resolutions,” Opt. Lasers Eng. 116, 82 (2019) [DOI: https://doi.org/10.1016/j.optlaseng.2018.12.014].

    Article  Google Scholar 

  19. S. Brunauer, P.H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc. 60(2), 309 (1937) [DOI: https://doi.org/10.1021/ja01269a023].

    Article  ADS  Google Scholar 

  20. L.N. Rozanov, “Desorption Gas Discharge of Construction Vacuum Materials,” Vakuumnaya Tekhnika i Tekhnologiya. 21(3), 143 (2011) (www.vacuum.ru/cgi-bin/zurnal/go.cgi?rnd=9729308&file=2011-21-3-9729308.pdf) [in Russian].

    Google Scholar 

  21. L.N. Rozanov, “Degree of Coating Surface of Stainless Steel by Adsorbed Water Molecules at Low Pressure and Various Temperatures,” Vakuumnaya Tekhnika i Tekhnologiya. 22(4), 197 (2012) (www.vacuum.ru/cgi-bin/zurnal/go.cgi?rnd=1156616&file=2012-22-4-1156616.pdf) [in Russian].

    Google Scholar 

  22. A.V. Bernatskiy, V.V. Lagunov, and V.N. Ochkin, “Measurements of Water Molecule Isotopomer Concentrations in a Discharge of Inert Gas with Addition of H2O and D2 Vapours by the Method of External-Cavity Diode Laser Spectroscopy,” Quantum Electronics 49(2), 157 (2019) [DOI: https://doi.org/10.1070/QEL16819].

    Article  ADS  Google Scholar 

  23. I.V. Nikolaev, V.N. Ochkin, G.S. Peters, M.V. Spiridonov, and S.N. Tskhai, “Recording Weak Absorption Spectra by the Phase-Shift Method with Deep Amplitude and Frequency Modulation Using a Diode Laser and a High Q Cavity,” Laser Phys. 23(3), 035701 (2013) [DOI: https://doi.org/10.1088/1054-660X/23/3/035701].

    Article  ADS  Google Scholar 

  24. G. Gagliardi and H.P. Loock, Cavity-Enhanced Spectroscopy and Sensing (Springer, Berlin, 2014) [DOI: https://doi.org/10.1007/978-3-642-40003-2].

    Book  Google Scholar 

  25. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanova, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, et al. “The HITRAN2016 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Rad. Transfer. 203, 3 (2017) [DOI: https://doi.org/10.1016/j.jqsrt.2017.06.038].

    Article  ADS  Google Scholar 

  26. N. Jacquinet-Husson, N.A. Scott, A. Chedin, L. Crepeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, et al. “The GEISA Spectroscopic Database: Current and Future Archive for Earth and Planetary Atmosphere Studies,” J. Quant. Spectrosc. Rad. Transfer. 109(6), 1043 (2008) [DOI: https://doi.org/10.1016/j.jqsrt.2007.12.015].

    Article  ADS  Google Scholar 

  27. http://spectra.iao.ru

  28. V.N. Ochkin, Spectroscopy of Low Temperature Plasma (Wiley-VCH, N.Y., 2009).

    Book  Google Scholar 

  29. V.N. Ochkin, “On the Errors in Measuring the Particle Density by the Light Absorption Method,” Plasma Phys. Rep. 41(4), 350 (2015) [DOI: https://doi.org/10.1134/S1063780X15040042].

    Article  ADS  Google Scholar 

  30. Ya.B. Zel’dovich and A.D. Myshkis, Elements of Applied Mathematics (Mir, Moscow, 1976) [www.archive.org/details/ZeldovichMyskisElementsOfAppliedMathematics].

    Google Scholar 

  31. I.N. Bronshteyn and K.A. Semendyayev, Handbook of Mathematics, 4th ed. (Springer, Berlin, 2004).

    Book  Google Scholar 

  32. S.R. Morrison, The Chemical Physics of Surfaces (Pienum Press, N.Y., London, 1977).

    Book  Google Scholar 

  33. I. Ralph, Chemistry of Silica—Solubility, Polymerization, Colloid and Surface Properties and Biochemistry (Wiley-Interscience, N.Y., 1979)

    Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation, Project 19-12-00310.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Bernatskiy, V. V. Lagunov or V. N. Ochkin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernatskiy, A.V., Lagunov, V.V. & Ochkin, V.N. Investigation of the Interaction of Water Molecules with the Surface of a Quartz Tube Using Diode Laser Spectroscopy. Phys. Wave Phen. 27, 165–177 (2019). https://doi.org/10.3103/S1541308X19030014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X19030014

Navigation