Skip to main content
Log in

Effect of polarization deviation of spontaneous parametric down-conversion on the degree of biphoton entanglement

  • Nonlinear and Parametric Optics
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Analysis is given to the effect of polarization deviation due to spontaneous parametric downconversion on the states of polarization-entangled photons generated via a cascaded two-crystal geometry with type I phase matching (e−oo).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-Ground Quantum Communication,” Nature Photon. 7(5), 382 (2013).

    Article  ADS  Google Scholar 

  2. D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, “Entanglement Distribution Over 150 km in Wavelength Division Multiplexed Channels for Quantum Cryptography,” arXiv preprint arXiv:1601.02402 (2016).

    Google Scholar 

  3. H.-K. Lo, M. Curty, and K. Tamaki, “Secure Quantum Key Distribution,” Nature Photon. 8(8), 595 (2014).

    Article  ADS  Google Scholar 

  4. J. Bourgoin, E. Meyer-Scott, B. Higgins, B. Helou, C. Erven, H. Huebel, B. Kumar, D. Hudson, I. D’Souza, R. Girard, R. Laflamme and T. Jennewein, “A Comprehensive Design and Performance Analysis of Low Earth Orbit Satellite Quantum Communication,” New J. Phys. 15(2), 023006 (2013).

    Article  ADS  Google Scholar 

  5. H. Takesue, “Quantum Communication Experiments Over Optical Fiber,” in Principles and Methods of Quantum Information Technologies (Springer, Japan, 2016), pp. 53–70.

    Chapter  Google Scholar 

  6. C. Lee, Z. Zhang, G.R. Steinbrecher, H. Zhou, J. Mower, T. Zhong, L. Wang, X. Hu, R.D. Horansky, V.B. Verma, A.E. Lita, R.P. Mirin, F. Marsili, M.D. Shaw, S.W. Nam, G.W. Wornell, F.N.C. Wong, J.H. Shapiro, and D. Englund, “Entanglement-Based Quantum Communication Secured by Nonlocal Dispersion Cancellation,” Phys. Rev. A. 90(6), 062331 (2014).

    Article  ADS  Google Scholar 

  7. S. Barz, E. Kashefi, A. Broadbent, J.F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of Blind Quantum Computing,” Science. 335(6066), 303 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. R.B. Patel, J. Ho, F. Ferreyrol, T.C. Ralph, and G.J. Pryde, “A Quantum Fredkin Gate,” Sci. Adv. 2(3), e1501531 (2016).

    Article  ADS  Google Scholar 

  9. K.R. Motes, J.P. Dowling, and P.P. Rohde, “Spontaneous Parametric Down-Conversion Photon Sources are Scalable in the Asymptotic Limit for Boson Sampling,” Phys. Rev. A. 88(6), 063822 (2013).

    Article  ADS  Google Scholar 

  10. M. Giustina, M.A.M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J. Å Larsson, C. Abellán, and W. Amaya, “Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons,” Phys. Rev. Lett. 115(25), 250401 (2015).

    Article  ADS  Google Scholar 

  11. S. Takeuchi, “Quantum Entangled Photon Sources and Their Application to Quantum Metrology,” in Proceedings of the 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR’2015) (BEXCO, Busan, Korea, 2015), p. 26F2−1.

    Google Scholar 

  12. P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, and P.H. Eberhard, “Ultrabright Source of Polarization-Entangled Photons,” Phys. Rev. A. 60, R773 (1999).

    Article  ADS  Google Scholar 

  13. P.P. Gostev, S.A. Magnitsky, N.M. Nagorsky, I.E. Protsenko, M.Y. Saygin, M.A. Turaev, V.V. Firsov, D.N. Frolovtsev, and D.V. Yakovlev, “The Source of Time-Correlated Photons at 1.064 μm and Its Applications,” EPJWeb Conf. 103, 10010 (2015).

    Article  Google Scholar 

  14. D.N. Klyshko, “Coherent Photon Decay in a NonlinearMedium,” in Proceedings of the All-Union Conference onNonlinear Properties of Media (1966) [in Russian].

    Google Scholar 

  15. D.N. Klyshko, “Coherent Photon Decay in a NonlinearMedium,” JETP Lett. 6, 23 (1967).

    ADS  Google Scholar 

  16. J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-Compensated Ultra-Bright Source of Entangled Photons,” Opt. Exp. 13(22), 8951 (2005).

    Article  ADS  Google Scholar 

  17. G.M. Akselrod, J.B. Altepeter, E.R. Jeffrey, and P.G. Kwiat, “Phase-Compensated Ultra-Bright Source of Entangled Photons: Erratum,” Opt. Exp. 15(8), 5260 (2007).

    Article  ADS  Google Scholar 

  18. R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing Type-I Polarization-Entangled Photons,” Opt. Exp. 17(21), 18920 (2009).

    Article  ADS  Google Scholar 

  19. A.B. U’Ren, K. Banaszek, and I.A. Walmsley, “Photon Engineering for Quantum Information Processing,” Quantum Inf. Comp. J. 3, 480 (2003).

    MathSciNet  MATH  Google Scholar 

  20. L.E. Vicent, A.B. U’Ren, R. Rangarajan, C.I. Osorio, J.P. Torres, L. Zhang, and I.A. Walmsley, “Design of Bright, Fiber-Coupled and Fully Factorable Photon Pair Sources,” New J. Phys. 12(9), 093027 (2010).

    Article  ADS  Google Scholar 

  21. R. Rangarajan, L.E. Vicent, A.B. U’Ren, and P.G. Kwiat, “Engineering an Ideal Indistinguishable Photon-Pair Source for Optical Quantum Information Processing,” J. Mod. Opt. 58(3-4), 318 (2011).

    Article  ADS  MATH  Google Scholar 

  22. K. Zielnicki, K. Garay-Palmett, R. Dirks, A.B. U’Ren, and P.G. Kwiat, “Engineering of Near-IR Photon Pairs to Be Factorable in Space-Time and Entangled in Polarization,” Opt. Exp. 23(6), 7894 (2015).

    Article  ADS  Google Scholar 

  23. A. Migdall, “Polarization Directions of Noncollinear Phase-Matched Optical Parametric Downconversion Output,” JOSA B. 14(5), 1093 (1997).

    Article  ADS  Google Scholar 

  24. R. Rangarajan, A.B. U’Ren, and P.G. Kwiat, “Polarization Dependence on Downconversion Emission Angle: Investigation of the’ Migdall Effect’,” J. Mod. Opt. 58(3-4), 312 (2011).

    Article  ADS  Google Scholar 

  25. S.A. Magnitskiy, P.P. Gostev, D.N. Frolovtsev, and V.V. Firsov, “Characterization of Polarization-Angular Spectrum of Type-I SPDC inBBO Crystal,” Moscow Univ. Phys. Bull. 70(5), 382 (2015).

    Article  ADS  Google Scholar 

  26. S. Magnitskiy, D. Frolovtsev, V. Firsov, P. Gostev, I. Protsenko, and M. Saygin, “A SPDC-Based Source of Entangled Photons and Its Characterization,” J. Russ. Laser Res. 36(6), 618 (2015).

    Article  Google Scholar 

  27. A. Agapov, P. Gostev, S. Magnitskiy, V. Firsov, and D. Frolovtsev, “Polarization-Angle SPDC Spectrum and Its Effect on Generated Photon States,” EPJWeb Conf. 103, 03004 (2015).

    Article  Google Scholar 

  28. D.N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, N.Y., 1988).

    Google Scholar 

  29. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  30. N.A. Peters, T.-Z. Wei, and P.G. Kwiat, “Mixed-State Sensitivity of Several Quantum-Information Benchmarks,” Phys. Rev. A. 70(5), 052309 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Frolovtsev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolovtsev, D.N., Magnitskiy, S.A. Effect of polarization deviation of spontaneous parametric down-conversion on the degree of biphoton entanglement. Phys. Wave Phen. 25, 180–184 (2017). https://doi.org/10.3103/S1541308X17030049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X17030049

Navigation