Skip to main content
Log in

An enhanced refractive index with suppressed absorption in a graphene nanostructure under external magnetic field

  • Electromagnetic Waves in Metamaterials
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2017

This article has been updated

Abstract

The dispersive-absorptive optical properties of a weak probe field are investigated based on quantum coherence and interference in a Landau-quantized graphene structure. It is found that an enhanced refractive index with vanishing absorption can be obtained in this structure through proper adjusting the controlling parameters of the system. The switching between superluminal and subluminal light propagation is also discussed. Our scheme can be employed in real experiments to develop new types of nanoelectronic devices for realizing all-optical switching process and can have practical application in dispersion compensation and solid-state quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 31 August 2017

    The Editorial Board apologizes for this error in the paper “An Enhanced Refractive Index with Suppressed Absorption in a Graphene Nanostructure under External Magnetic Field” by A. Raheli, H.R. Hamedi, and M. Sahrai.

References

  1. Y. Niu and S. Gong, “Enhancing Kerr Nonlinearity Via Spontaneously Generated Coherence,” Phys. Rev. A. 73, 053811 (2006).

    Article  ADS  Google Scholar 

  2. Wang Fu-Yuan, Shi Bao-Sen, Lu Xiao-Song, and Guo Guang-Can, “Two Narrow Bandwidth Photons Interfering in an Electromagnetically Induced Transparency (EIT) System,” Chin. Phys. B. 17, 1798 (2008).

    Article  ADS  Google Scholar 

  3. Y. Wu and X. Yang, “Electromagnetically Induced Transparency in V -, ?-, and Cascade-Type Schemes Beyond Steady-State Analysis,” Phys. Rev. A. 71, 053806 (2005).

    Article  ADS  Google Scholar 

  4. Y. Wu and X. Yang, “Giant Kerr Nonlinearities and Solitons in a Crystal of Molecular Magnets,” Appl. Phys. Lett. 91, 094104 (2007).

    Article  ADS  Google Scholar 

  5. K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 66, 2593 (1991).

    Article  ADS  Google Scholar 

  6. W. Jiang, X. Yan, J. Song, H. Zheng, C. Wu, B. Yin, and Y. Zhang, “Enhancement of KerrNonlinearity Via Spontaneously Generated Coherence in a Four-Level N-Type Atomic System,” Opt.commun. 282, 101 (2009).

    Article  ADS  Google Scholar 

  7. W.-X. Yang, T.-T. Zha, and R.-K. Lee, “Giant Kerr Nonlinearities and Slow Optical Solitons in Coupled Double Quantum-Well Nanostructure,” Phys. Lett. A. 374, 355 (2009).

    Article  ADS  Google Scholar 

  8. L. Yuan, D. Wang, A. A. Svidzinsky, H. Xia, O. Kocharovskaya, A. Sokolov, G. R. Welch, S. Suckewer, and M. O. Scully, “Transient Lasing without Inversion Via Forbidden and Virtual Transitions,” Phys. Rev. A. 89, 013814 (2014).

    Article  ADS  Google Scholar 

  9. H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, B. Haddadpour-Khiaban, and M. Sahrai, “Optical Bistability in Low-Dimensional Semiconductor Heterostructures under CW Pump Laser and Infrared Pulse Signals,” Phys. Wave Phenom. 21(3), 214 (2013) [DOI:10.3103/S1541308X13030072].

    Article  ADS  Google Scholar 

  10. Z. Wang and B. Yu, “High-Precision Two-Dimensional Atom Localization Via Quantum Interference in a Tripod-Type System,” Laser Phys. Lett. 11, 035201 (2014).

    Article  ADS  Google Scholar 

  11. H. R. Hamedi, A. Khaledi-Nasab, H. Ghaforyan, and M. Sahrai, “Control of the Threshold Intensity and Hysteresis Cycle of Optical Bi(multi)stability Via Atomic Injection and Exit Rates from Cavity,” Phys. Wave Phenom. 21(4), 274 (2013) [DOI:10.3103/S1541308X13040079].

    Article  ADS  Google Scholar 

  12. Liu Wan-Guo, Pan Feng-Ming, and Cai Li-Wei, “Rectification Effect in Asymmetric Kerr Nonlinear Medium,” Chin. Phys. B. 23, 064213 (2014).

    Article  ADS  Google Scholar 

  13. Y. Wu, “Matched Soliton Pairs of Four-Wave Mixing in MolecularMagnets,” J. Appl. Phys. 103, 5 (2008).

    Google Scholar 

  14. Y. Wu and X. Yang, “Exact Eigenstates for a Class of Models Describing Two-Mode Multiphoton Processes,” Opt. Lett. 28(19), 1793 (2003).

    Article  ADS  Google Scholar 

  15. C. Ding, J. Li, Z. Zhan, and X. Yang, “Two-Dimensional Atom Localization Via Spontaneous Emission in a Coherently Driven Five-Level M-Type Atomic System,” Phys. Rev. A. 83, 063834 (2011).

    Article  ADS  Google Scholar 

  16. J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical Bistability and Multistability Via Atomic Coherence in an N-Type Atomic Medium,” Phys. Rev. A. 74, 035801 (2006).

    Article  ADS  Google Scholar 

  17. J.-H. Li, “Controllable Optical Bistability in a Four-Subband Semiconductor Quantum Well System,” Phys. Rev. B. 75, 155329 (2007).

    Article  ADS  Google Scholar 

  18. Y. Gong, J. Huang, K. Li, N. Copner, J. J. Martinez, L. Wang, T. Duan, W. Zhang, and W. H. Loh, “Spoof Four-Wave Mixing for All-Optical Wavelength Conversion,” Opt. Exp. 20, 24030 (2012).

    Article  ADS  Google Scholar 

  19. Y. Zhang, B. Anderson, and M. Xiao, “Efficient Energy Transfer between Four-Wave-Mixing and Six-Wave-Mixing Processes Via Atomic Coherence,” Phys. Rev. A. 77, 061801 (2008).

    Article  ADS  Google Scholar 

  20. W.-X. Yang, J.-M. Hou, Y.-Y. Lin, and R.-K. Lee, “Detuning Management of Optical Solitons in Coupled Quantum Wells,” Phys. Rev. A. 79, 033825 (2009).

    Article  ADS  Google Scholar 

  21. N. Chen, T. Shui, B. Qian, Z. Wang, and B. Yu, “Enhanced Refractive Index without Absorption in Semiconductor Quantum Dots,” Quantum Inform. Proc. 14, 2387 (2015).

    Article  ADS  MATH  Google Scholar 

  22. D. Cheng, C. Liu, and S. Gong, “Optical Bistability and Multistability Via the Effect of Spontaneously Generated Coherence in a Three-Level Ladder-Type Atomic System,” Phys. Lett. A. 332, 244 (2004).

    Article  ADS  MATH  Google Scholar 

  23. H. Tajalli and M. Sahrai, “Switching from Normal to Anomalous Dispersion Via Coherent Field,” J. Opt. B: Quantum Semiclass. Opt. 7, 168 (2005).

    Article  ADS  Google Scholar 

  24. W.-X. Yang, A.-X. Chen, Y. Bai, and R.-K. Lee, “Ultrafast Single-Electron Transfer in CoupledQuantum Dots Driven by a Few-Cycle Chirped Pulse,” J. Appl. Phys. 115, 143105 (2014).

    Article  ADS  Google Scholar 

  25. C. Hang and G. Huang, “Giant Kerr Nonlinearity and Weak-Light SuperluminalOptical Solitons in a Four-State Atomic System with Gain Doublet,” Opt. Exp. 18(3), 2952 (2010).

    Article  ADS  Google Scholar 

  26. Z. Wang, A.-X. Chen, Y. Bai, W.-X. Yang, and R.-K. Lee, “Coherent Control of Optical Bistability in an Open ?-Type Three-Level Atomic System,” JOSA B. 29, 2891 (2012).

    Article  ADS  Google Scholar 

  27. X. Zhang, L. Yu, S. Zhang, L. Li, J. Zhao, J. Cui, G. Dong, and R. Wang, “Controlled Optical Bistability Switching in a Diode-Pumped Tm, Ho:LLF Laser,” Laser Phys. Lett. 10, 125801 (2013).

    Article  ADS  Google Scholar 

  28. H. Z. Shen, M. Qin, X.-M. Xiu, and X. X. Yi, “Exact Non-Markovian Master Equation for a Driven Damped Two-Level System,” Phys. Rev. A. 89, 062113 (2014).

    Article  ADS  Google Scholar 

  29. M. I. Katsnelson, “Graphene: Carbon in Two Dimensions,” Mater. Today. 10, 20 (2007).

    Article  Google Scholar 

  30. M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, and B. J. LeRoy, “Emergence of Superlattice Dirac Points in Graphene on Hexagonal Boron Nitride,” Nature Phys. 8(5), 382 (2012).

    Article  ADS  Google Scholar 

  31. B. E. Feldman, B. Krauss, J. H. Smet, and A. Yacoby, “Unconventional Sequence of Fractional Quantum Hall States in Suspended Graphene,” Science. 337, 1196 (2012).

    Article  ADS  Google Scholar 

  32. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science. 315, 1379 (2007).

    Article  ADS  Google Scholar 

  33. J. Guillemette, S. S. Sabri, B. X. Wu, K. Bennaceur, P. E. Gaskell, M. Savard, P. L. Le’vesque, F. Mahvash, A. Guermoune, M. Siaj, R. Martel, T. Szkopek, and G. Gervais, “Quantum Hall Effect in Hydrogenated Graphene,” Phys. Rev. Lett. 110, 176801 (2013).

    Article  ADS  Google Scholar 

  34. K. Kim, S. Cho, C. Lee, “Nonlinear Optics: Graphene-Silicon Fusion,” Nature Photon. 6, 502 (2012).

    Article  ADS  Google Scholar 

  35. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative Oscillation and Four-Wave Mixing in Graphene Optoelectronics,” Nature Photon. 6, 554 (2012).

    Article  ADS  Google Scholar 

  36. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105, 097401 (2010).

    Article  ADS  Google Scholar 

  37. X. H. Yao and A. Belyanin, “Nonlinear Optics of Graphene in a Strong Magnetic Field,” J. Phys.: Condens. Matter. 25, 054203 (2013).

    ADS  Google Scholar 

  38. S. Mikhailov, “Nonlinear Electromagnetic Response of Graphene,” Europhys. Lett. 79, 27002 (2007).

    Article  ADS  Google Scholar 

  39. M. Tokman, X. Yao, and A. Belyanin, “Generation of Entangled Photons in Graphene in a Strong Magnetic Field,” Phys. Rev. Lett. 110, 077404 (2013).

    Article  ADS  Google Scholar 

  40. X. Yao and A. Belyanin, “Giant Optical Nonlinearity of Graphene in a Strong Magnetic Field,” Phys. Rev. Lett. 108, 255503 (2012).

    Article  ADS  Google Scholar 

  41. X. Yao, M. Tokman, and A. Belyanin, “Efficient Nonlinear Generation of THz Plasmons in Graphene and Topological Insulators,” Phys. Rev. Lett. 112, 055501 (2014).

    Article  ADS  Google Scholar 

  42. S. A. Mikhailov, “Theory of theNonlinearOptical Frequency Mixing Effect in Graphene,” Physica E. 44, 924 (2012).

    Article  ADS  Google Scholar 

  43. S. A. Mikhailov and K. Ziegler, “Nonlinear Electromagnetic Response of Graphene: Frequency Multiplication and the Self-Consistent-Field Effects,” J. Phys.: Condens. Matter. 20, 384204 (2008).

    ADS  Google Scholar 

  44. X. Yao and A. Belyanin, “Giant Optical Nonlinearity of Graphene in a Magnetic Field,” Proc. SPIE. 8604, 860412 (2013).

    Article  Google Scholar 

  45. C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Matched Infrared Soliton Pairs in Graphene under Landau Quantization Via Four-Wave Mixing,” Phys. Rev. A. 90, 043819 (2014).

    Article  ADS  Google Scholar 

  46. S. H. Asadpour, H. R. Hamedi, and H. Rahimpour-Soleimani, “Slow Light Propagation and Bistable Switching in a Graphene under an ExternalMagnetic Field,” Laser Phys. Lett. 12, 045202 (2015).

    Article  ADS  Google Scholar 

  47. A. Raheli, H. R. Hamedi, and M. Sahrai, “Controllable Optical Bistability and Multistability in a Graphene Structure under External Magnetic Field,” Laser Phys. 26, 025201 (2016).

    Article  ADS  Google Scholar 

  48. C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Formation and Ultraslow Propagation of Infrared Solitons in Graphene under an ExternalMagnetic Field,” J. Appl. Phys. 115, 234301 (2014).

    Article  ADS  Google Scholar 

  49. D. S. L. Abergel and V. I. Fal’ko, “Optical and Magneto-Optical Far-Infrared Properties of Bilayer Graphene,” Phys. Rev. B. 75, 155430 (2007).

    Article  ADS  Google Scholar 

  50. Y. Zheng and T. Ando, “Hall Conductivity of a Two-Dimensional Graphite System,” Phys. Rev. B. 65, 245420 (2002).

    Article  ADS  Google Scholar 

  51. T. Ando, “Theory of Electronic States and Transport in Carbon Nanotubes,” J. Phys. Soc. Jpn. 74, 777 (2005).

    Article  ADS  MATH  Google Scholar 

  52. M. L. Nesterov, J. Bravo-Abad, A. Yu. Nikitin, F. J. Garcia-Vidal, and L. Martin-Moreno, “Graphene Supports the Propagation of Subwavelength Optical Solitons,” Laser Photon. Rev. 7, L7 (2013).

    Article  Google Scholar 

  53. Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared Spectroscopy of Landau Levels of Graphene,” Phys. Rev. Lett. 98, 197403 (2007).

    Article  ADS  Google Scholar 

  54. H. Dong, C. Conti, A. Marini, and F. Biancalana, “Terahertz Relativistic Spatial Solitons in Doped GrapheneMetamaterials,” J. Phys. B. 46, 155401 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Raheli.

Additional information

An erratum to this article is available at https://doi.org/10.3103/S1541308X1703013X.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raheli, A., Hamedi, H.R. & Sahrai, M. An enhanced refractive index with suppressed absorption in a graphene nanostructure under external magnetic field. Phys. Wave Phen. 25, 107–113 (2017). https://doi.org/10.3103/S1541308X17020054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X17020054

Navigation