Skip to main content
Log in

Development of a compact hardware/software package for noninvasive diagnostics of skin diseases in the THz frequency range

  • Electromagnetic Applications in Biology and Medicine
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The key elements of a mobile hardware/software package for noninvasive diagnostics of skin diseases in the THz frequency range have been designed, produced, and approved in model experiments. These elements are a compact THz oscillator based on an all-fiber femtosecond laser system and a unit for recovering electrodynamic characteristics of layered objects from scattered THz radiation spectra. Generation of 250-fs optical pulses at a wavelength of 1.03 µm with energy of 0.3 µJ and a repetition frequency of 1MHz is demonstrated and the efficiency of optical-THz conversion is found to be 5×10−6. The proposed algorithm is constructed based on an iterative procedure and can be used for dispersive and absorbing media. It has higher operating speed in comparison with the algorithms for solving inverse problems, which are based on functional minimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Han, “Terahertz Medical Imaging,” in Convergence of Terahertz Sciences in Biomedical Systems. Ed. by G.-S. Park, Y.H. Kim, H. Han, J.K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y.U. Jeong (Springer, 2013), p. 351.

    Google Scholar 

  2. V.P. Wallace, A.J. Fitzgerald, E. Pickwell, R.J. Pye, P.F. Taday, N. Flanagan, and T. Ha, “Terahertz Pulsed Spectroscopy of Human Basal Cell Carcinoma,” Appl. Spectrosc. 60, 1127 (2006).

    Article  ADS  Google Scholar 

  3. R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, and M. Pepper, “Terahertz Pulse Imaging in Reflection Geometry of Human Skin Cancer and Skin Tissue,” Phys. Med. Biol. 47, 3853 (2002).

    Article  Google Scholar 

  4. S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz Imaging Diagnostics of Cancer Tissues with a Chemometrics Technique,” Appl. Phys. Lett. 90, 041102 (2007).

    Article  ADS  Google Scholar 

  5. M.A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, and Y. Eishii, “Terahertz Imaging Applied to Cancer Diagnosis,” Phys. Med. Biol. 55, 4615 (2010).

    Article  Google Scholar 

  6. D.M. Mittleman, M. Gupt, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent Advances in Teraherz Imaging,” Appl. Phys. B Laser Opt. 68, 1085 (1999).

    Article  ADS  Google Scholar 

  7. M.H. Arbab, T.C. Dickey, D.P. Winebrenner, A. Chen, M.B. Klein, and P.D. Mourad, “Terahertz Reflectometry of Burn Wounds in a Rat Model,” Biomed. Opt. Exp. 2, 2339 (2011).

    Article  Google Scholar 

  8. Z.D. Taylor, R.S. Singh, M.O. Culjat, J.Y. Suen, W.S. Grundfest, H. Lee, and E.R. Brown, “Reflective Terahertz Imaging of Porcine Skin Burns,” Opt. Lett. 33(11), 1258 (2008).

    Article  ADS  Google Scholar 

  9. D.M. Mittleman, S. Hunsche, L. Boivin, and M.C. Nuss, “T-Ray Tomography,” Opt. Lett. 22, 904 (1997).

    Article  ADS  Google Scholar 

  10. M. Szayna and W. Kuhn, “In Vivo and in Vitro Investigations of Hydration Effects of Beauty Care Products by High-Field MRI and NMR Microscopy,” J. Eur. Acad. Dermatol. Venereol. 11, 122 (1998).

    Article  Google Scholar 

  11. http://www.gks.ru/bgd/regl/b13-12/Isswww.exe/stg/d01/9-03.htm

  12. T.P. Habif, M.S. Chapman, J.L. Campbell Jr., J.G.H. Dinulos, and K.A. Zug, Skin Diseases. Diagnosis and Treatment. 3rd Ed. (Elsevier Health Sciences, Saunders, US, 2011).

    Google Scholar 

  13. K.L. Yeh, J. Hebling, M.C. Hoffmann, and K.A. Nelson, “Generation of High Average Power 1 kHz Shaped THz Pulses Via Optical Rectification,” Opt. Commun. 281, 3567 (2008).

    Article  ADS  Google Scholar 

  14. A.G. Stepanov, L. Bonacina, S.V. Chekalin, and J.P. Wolf, “Generation of 30 µJ Single-Cycle Terahertz Pulses at 100 Hz Repetition Rate by Optical Rectification,” Opt. Lett. 33(21), 2497 (2008).

    Article  ADS  Google Scholar 

  15. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.J. Fuchs, E.B. Kley, H. Zellmer, and A. Tunnermann, “High-Power Femtosecond Yb-Doped Fiber Amplifier,” Opt. Exp. 10, 628 (2002).

    Article  ADS  Google Scholar 

  16. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tunnermann, “All Fiber Chirped-Pulse Amplification System Based on Compression in Air-Guiding Photonic Bandgap Fiber,” Opt. Exp. 11, 3332 (2003).

    Article  ADS  Google Scholar 

  17. Y. Deng, Ch.-Y. Chien, B.G. Fidric, and J.D. Kafka, “Generation of Sub-50 fs Pulses from a High-Power Yb-Doped Fiber Amplifier,” Opt. Lett. 34(22), 3469 (2009).

    Article  Google Scholar 

  18. G. Chang, C. Divin, C. Liu, S. Williamson, A. Galvanauskas, and T. Norris, “Power Scalable Compact THz System Based on an Ultrafast Yb-Doped Fiber Amplifier,” Opt. Exp. 14, 7909 (2006).

    Article  ADS  Google Scholar 

  19. G. Chang, C.J. Divin, J. Yang, M.A. Musheinish, S.L. Williamson, A. Galvanauskas, and T.B. Norris, “GaP Waveguide Emitters for High Power Broadband THz Generation Pumped by Yb-Doped Fiber Lasers,” Opt. Exp. 15, 16308 (2007).

    Article  ADS  Google Scholar 

  20. A.V. Andrianov, E.A. Anashkina, S.V. Muravyev, and A.V. Kim, “Hybrid Er/Yb Fibre Laser System for Generating Few-Cycle 1.6 to 2.0 µm Pulses Optically Synchronised with High-Power Pulses Near 1 µm,” Quantum Electron. 43, 256 (2013).

    Article  ADS  Google Scholar 

  21. A. Andrianov, E. Anashkina, S. Muravyev and A. Kim, “All-Fiber Design of Hybrid Er-Doped Laser/Yb-Doped Amplifier System for High-Power Ultrashort Pulse Generation,” Opt. Lett. 35, 3805 (2010).

    Article  Google Scholar 

  22. D.R. Austin, C.M. de Sterke, B.J. Eggleton and T.G. Brown, “Dispersive Wave Blue-Shift in Supercontinuum Generation,” Opt. Exp. 14(25), 11997 (2006).

    Article  ADS  Google Scholar 

  23. J.B. Jackson, M. Mourou, J.F. Whitaker, I.N. Duling III, S.L. Williamson, M. Menu, and G.A. Mourou, “Terahertz Imaging for Non-Destructive Evaluation of Mural Paintings,” Opt. Commun. 281, 527 (2008).

    Article  ADS  Google Scholar 

  24. K. Fukunaga, Y. Ogawa, S. Hayashi and I. Hosako, “Application of Terahertz Spectroscopy for Character Recognition in a Medieval Manuscript,” IEICE Electron. Exp. 5, 223 (2008).

    Article  Google Scholar 

  25. T. Trafela, M. Mizuno, K. Fukunaga, and M. Strlic, “THz Spectroscopy and Chemometrics for Quantitative Determination of Chemical Properties and Dating of Historic Paper,” in Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves (Rome, Italy, September 5–10, 2010).

    Google Scholar 

  26. A.A. Angeluts, A.A. Golubkov, V.A. Makarov, and A.P. Shkurinov, “Reconstruction of the Spectrum of the Relative Permittivity of the Plane-Parallel Plate from the Angular Dependences of Its Transmission Coefficients,” JETP Lett. 93, 191 (2011).

    Article  ADS  Google Scholar 

  27. A.A. Golubkov and V.A. Makarov, “Determining the Dielectric Permittivity of a One-Dimensionally Inhomogeneous Plate with a Strong Frequency Dispersion and Absorption from the Reflection and Transmission Coefficients of s-Polarized Waves,” Opt. Spectrosc. 108, 804 (2010).

    Article  ADS  Google Scholar 

  28. Ya.I. Molkov, D.N. Mukhin, E.V. Suvorov, and A.M. Feigin, “Bayesian Approach to Retrieving a Vertical Ozone Profile from Radiometric Measurement Data,” Radiophys. Quantum Electron. 46, 675 (2003).

    Article  ADS  Google Scholar 

  29. S.P. Skulkin and V.I. Turchin, “Characteristics of Exact Retrieval of the Structure of Plane-Stratified Media Using Reflected and Transmitted Pulse Signals,” Radiophys. Quantum Electron. 53, 432 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Anashkina.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anashkina, E.A., Andrianov, A.V., Akhmedzhanov, R.A. et al. Development of a compact hardware/software package for noninvasive diagnostics of skin diseases in the THz frequency range. Phys. Wave Phen. 22, 202–209 (2014). https://doi.org/10.3103/S1541308X14030078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X14030078

Keywords

Navigation