Skip to main content
Log in

Matching the Characteristics of Structural Strength and Structure to Justify the Stamping Technology of Titanium Alloys

  • AIRCRAFT PRODUCTION TECHNOLOGY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The effective characteristics of the true strain diagram of martensitic and transition class titanium alloys are used to substantiate their technological states providing high values of fatigue resistance in different combinations of loads as applied to the operating conditions of the main elements of compressors, center section, and landing gear. The properties determining the structural strength are consistent with the structure parameters of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Polmear, I.J., Light Alloys: from Traditional Alloys to Nanocrystals, Elsevier/Butterworth-Heinemann, 2006.

    Google Scholar 

  2. Murataev, F.I. and Mukhamadeev, I.M., Regularities of Structural States and Structural Strength Characteristics of Titanium Alloy Forgings, Vestnik KGTU im. A.N. Tupoleva, 2020, no. 2, pp. 46–52.

    Google Scholar 

  3. Murataev, F.I., Galimov, E.R., and Galimova, N.Ya., Ranking Materials Technologies by Limiting Characteristics of Heat-Resistant Alloys and Their Longevity in the Problems of Import Substitution, URL: https://iopscience.iop.org/article/10.1088/1757-899X/570/1/012070/pdf.

  4. Makhutov, N.A., Konstruktsionnaya prochnost’, resurs i tekhnogennaya bezopasnost’ (Structural Strength, Resource and Engineering Safety, vol. 1: Strength and Resource Criteria), Novosibirsk: Nauka, 2005.

    Google Scholar 

  5. Murataev, F.I. and Shkanov, I.N., Substantiation of Machining Technology of Compressor Disks According to Static and Cyclic Deformation Characteristics, Izv. Vuz. Av. Tekhnika, 1999, vol. 42, no. 1, pp. 45–47 [Russian Aeronautics (Engl. Transl.), vol. 42, no. 1, pp. 62–66].

    Google Scholar 

  6. McEvily, M.J., Metal Failures: Mechanisms, Analysis, Prevention, John Wiley and Sons, 2002.

    Google Scholar 

  7. Murataev, F.I., Zagidullin, A.D., and Danilov, E.V., Ranking of Structural Strength Characteristics to Predict Cyclic Durability of Alloys under Thermal-Force Loading, Materialy 11oi Vserossiiskoi konferentsii po ispytaniyam i issledovaniyam materialov “Test–Mat” (Proc. 11th All-Russian Conference on Testing and Research of Material Properties “Test–Mat”), Moscow, 2019, Moscow: VIAM, 2019, pp. 221–235.

    Google Scholar 

  8. Murataev, F.I. and Zharzhanazi, M.A., Ensuring the Structural Strength of Titanium Alloys by the Criteria of Ultimate Ductility and Fatigue Resistance, Vestnik KGTU im. A.N. Tupoleva, 2013, no.1, pp. 50–53.

    Google Scholar 

  9. Murataev, F.I. and Khakimov, S.Sh., Substantiation of Microstructure and Properties of Titanium Alloys for Fatigue Resistance Prediction Tasks, Vestnik KGTU im. A.N. Tupoleva, 2014, no. 3, pp. 110–113.

    Google Scholar 

  10. Kolachev, B.A., Elagin, V.I., and Livanov, V.A., Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov (Metal Technology and Heat Treatment of Non-Ferrous Metals and Alloys), Moscow: MISiS, 2005.

    Google Scholar 

  11. Belov, S.P., Brun, M.Ya., Glazunov, S.G., et al. Metallovedenie titana i ego splavov (Metallurgy of Titanium and its Alloys), Moscow: Metallurgy, 1992.

    Google Scholar 

  12. Aleksandrov, V.K., Anoshkin, N.F., Belozerov, A.P., et al., Polufabrikaty iz titanovykh splavov (Semifinished Products from Titanium Alloys), Moscow: VILS, 1996.

    Google Scholar 

  13. Murataev, F.I., Makhmutyanov, A.N., and Murataev, T.A., Transformation of Titanium Alloys in the Laser Spot During Shock Hardening, Vestnik KGTU im. A.N. Tupoleva, 2020, no. 2, pp. 57–62.

    Google Scholar 

  14. Murataev, F.I. and Murataev, T.A., Investigation of Metal Damageability for GTU Compressor Discs, Vestnik KGTU im. A.N. Tupoleva, 2016, no. 4, pp. 31–34.

    Google Scholar 

  15. Makhutov, N.A., Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost’ (Deformation Criteria of Fracture and Strength Analysis of Structural Elements), Moscow: Mashinostroenie, 1981.

    Google Scholar 

  16. Murataev, F.I. and Galimov, E.R., Development of Hardening Technology for Working Surfaces of Microsurgical Instruments Made of Titanium Alloy, URL: https://iopscience.iop.org/article/10.1088/1757-899X/915/1/012042/pdf.

  17. Il’in, A.A., Kolachev, B.A., and Pol’kin, I.S., Titanovye splavy, Sostav, struktyra i svoistva (Titanium Alloys. Composition, Structure, Properties), Moscow: VILS-MATI, 2009.

    Google Scholar 

  18. Murataev, F.I. and Mukhamadeev, I.M., Metallography of Corrosion Cracking of Steels, Vestnik KGTU im. A.N. Tupoleva, 2020, no. 3, pp. 49–55.

    Google Scholar 

  19. Murataev, F.I., Galimov, E.R., and Galimova, N.Ya., Substantiation of Domestic Material and Welding Technology for Improving Properties and Competitiveness of Pyrolysis Furnace Coils, URL: https://www.researchgate.net/publication/335191084_Substantiation_of_domestic_material_and_welding_technology_for_improving_properties_and_competitiveness_of_pyrolysis_furnace_coils.

  20. Klabukov, M.A. and Kolesnikov, D.N., Matching Characteristics of the Structure and Properties of Titanium Alloys, Vestnik KGTU im. A.N. Tupoleva, 2020, no. 2, pp. 53–56.

    Google Scholar 

  21. Murataev, F.I. and Klabukov, M.A., Features of Laser Shock Hardening of Steels and Titanium Alloys, Vestnik KGTU im. A.N. Tupoleva, 2012, no. 4-2, pp. 82–84.

    Google Scholar 

  22. Shlyannikov, V.N., Yarullin, R.R., and Ishtyryakov, I.S., Lifetime Assessment for a Cracked Compressor Disc Based on the Plastic Stress Intensity Factor, Loading, Izv. Vuz. Av. Tekhnika, 2020, vol. 63, no. 1, pp. 15–24 [Russian Aeronautics (Engl. Transl.), vol. 63, no. 1, pp. 14–24].

    Google Scholar 

  23. Krivosheev, I.A., Rozhkov, K.E., and Simonov, N.B., Optimization of the Stage Number and Parameter Distribution in the Flow Passage at GTE Compressor and Turbine Design, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, no. 2, pp. 124–132 [Russian Aeronautics (Engl. Transl.), 2019, vol. 62, no. 2, pp. 304–313].

    Google Scholar 

  24. Arkhipov, A.N., Matushkin, A.A., Ravikovich, Yu.A., Kholobtsev, D.P., and Volgina, M.V., Probabilistic Assessment of Life for Gas Turbine Engine Parts Considering Manufacture Tolerances, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, no. 3, pp. 95–102 [Russian Aeronautics (Engl. Transl.), 2019, vol. 62, no. 3, pp. 455–462].

    Google Scholar 

  25. Murataev, F.I., Evlamp’ev, A.V., and Murataev, T.A., Analysis of the Reasons for Development of Stress Corrosion of Austenitic Steels and Welded Joints, Vestnik KGTU im. A.N. Tupoleva, 2021. no. 1, pp. 76–81.

    Google Scholar 

  26. Bratukhin, A.G., Pogosyan, M.A., and Tarasenko, L.V., Konstruktsionnye i funktsional’nye materialy (Structural and Functional Materials of Modern Aircraft Engineering), Bratukhin, A.G., Ed., Moscow: MAI, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. I. Murataev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 4, pp. 171 - 179.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murataev, F.I., Shabalin, E.A. Matching the Characteristics of Structural Strength and Structure to Justify the Stamping Technology of Titanium Alloys. Russ. Aeronaut. 64, 773–782 (2021). https://doi.org/10.3103/S1068799821040243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821040243

Keywords

Navigation