Skip to main content
Log in

Aeroacoustic Characteristics of a Quadcopter Impeller in Vertical Take-Off and Landing Mode

  • AERO- AND GAS-DYNAMICS OF FLIGHT VEHICLES AND THEIR ENGINES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

To determine the aeroacoustic characteristics of a quadcopter, large eddies of a turbulent flow induced by a four-blade impeller are simulated. The acoustic analogy method based on the integration of the Ffowcs Williams–Hawkings equation is used to calculate the acoustic noise in the far field. A spectral analysis of the acoustic noise generated by the impeller is performed, and the directional patterns of acoustic radiation are plotted for various rotor rotation speeds that simulate the vertical take-off and landing modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Ostroukhov, S.P., Aerodinamika vozduzhnykh vintov i vintokol’tsevykh dvizhitelei (Aerodynamics of Propellers and Impellers), Moscow: Fizmatlit, 2014.

    Google Scholar 

  2. Czyba, R. and Szafranski, G., Control Structure Impact on the Flying Performance of the Multi-Rotor VTOL Platform – Design, Analysis and Experimental Validation, Int. Journal of Advanced Robotic Systems, 2013, vol. 10, no. 1, URL: https://journals.sagepub.com/doi/full/10.5772/53747.

  3. Hrishikeshavan, V. and Chopra, I., Performance, Flight Testing of Shrouded Rotor Micro Air Vehicle in Edgewise Gusts, Journal of Aircraft, 2012, vol. 49, no. 1, pp. 193–205.

    Article  Google Scholar 

  4. Popov, N.I., Emel’yanova, O.V., and Yatsun, S.F., Simulation of the Dynamics of a Quadcopter Flight, Vestnik Voronezhskogo Instituta GPS MChS Rossii, 2014, no. 4(13), pp. 69–75.

    Google Scholar 

  5. Kanatnikov, A.N. and Akopyan, K.R., Quadcopter Flat Motion Control, Matematika i Matematicheskoe Modelirovanie, 2015, no. 2, pp. 23–36.

    Google Scholar 

  6. Shaidakov, V.I., Influence of Proximity to the Ground on the Aerodynamic Characteristics of an Aircraft with a Rotor-in-a-Ring Carrier System, Trudy MAI, 2011, no. 49, pp. 7–13, URL: http://trudymai.ru/published.php?ID=26562.

  7. Garipova, L.I., Batrakov, A.S., Kusyumov, A.N., Mikhailov, S.A., and Barakos, G.N., Estimates of Hover Aerodynamics Performance of Rotor Model, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 7–13 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 3, pp. 223–231].

    Google Scholar 

  8. Batrakov, A.S., Garipova, L.I., Kusymov, A.N., and Barakos, G.N., The Use of Computational Fluid Mechanics Tools in the Problem of Determining the Aerodynamic Characteristics of a Helicopter, Nauchno-Metodicheskii Zhurnal Contsept, 2014, vol. 20, pp. 2471–2475.

    Google Scholar 

  9. Dehaeze, F., Barakos, G.N., Kusyumov, A.N., Kusyumov, S.A., and Mikhailov, S.A., Exploring the Detached-Eddy Simulation for Main Rotor Flows, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 1, pp. 40–46 [Russian Aeronautics (Engl. Transl.), 2018, vol. 61, no. 1, pp. 37–44].

    Google Scholar 

  10. Rumsey, C.L., Biedron, R., Farassat, F., and Spence, P., Ducted-Fan Engine Acoustic Predictions Using a Navier–Stokes Code, Journal of Sound and Vibration, 1998, vol. 213, no. 4, pp. 643–664.

    Article  Google Scholar 

  11. Reboul, G., Polacsek, C., Lewy, S., and Heib, S., Aeroacoustic Computation of Ducted-Fan Broadband Noise Using LES Data, Journal of Acoustic Society of America, 2008, vol. 123, no. 5, paper no. 3539.

    Article  Google Scholar 

  12. Myers, L.M., Rhee, W., and Mclaughlin, D., Aeroacoustics of Vertical Lift Ducted Rotors, Proc. 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), 2009, AIAA Paper no. 2009–3333.

  13. Astley, R., Sugimoto, R., Achunche, I., Kewin, M., Mustafi, P., and Deane, E., A Review of CAA for Fan Duct Propagation and Radiation, with Application to Liner Optimisation, Procedia Engineering, 2010, vol. 6, pp. 143–152.

    Article  Google Scholar 

  14. Yang, Y., Veldhuis, L.L.M., and Eitelberg, G., Investigation of Propeller Induced Ground Vortices by Numerical and Experimental Methods, Proc. 33rd AIAA Applied Aerodynamics Conference, 2015, AIAA Paper no. 2015-3302.

  15. Jiang, Y., Zhang, B., and Huang, T., CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft, Aerospace Journal, 2015, vol. 2, no. 4, pp. 555–580.

    Article  Google Scholar 

  16. Heinzen, S.B., Hall, C.E., and Gopalarthnam, A., Development and Testing of a Passive Variable-Pitch Propeller, Journal of Aircraft, 2015, vol. 52, no. 3, pp. 748–763.

    Article  Google Scholar 

  17. Kutty, H.A. and Rajendran, P., 3D CFD Simulation and Experimental Validation of Small APC Slow Flyer Propeller Blade, Aerospace Journal, 2017, vol. 4, no. 1, URL: https://www.mdpi.com/2226-4310/4/1/10.

  18. Malgoezar, A.M., Vieira, A., Snellen, M., Simons, D.G., and Veldhuis, L.L., Experimental Characterization of Noise Radiation from a Ducted Propeller of an Unmanned Aerial Vehicle, International Journal of Aeroacoustics, 2019, vol. 18, nos. 4–5, pp. 372–391.

    Article  Google Scholar 

  19. Kopiev, V.F., Titarev, V.A., and Belyaev, I.V., Development of a Methodology for a Propeller Noise Calculation on High-Performance Computers, Uchenye Zapiski TsAGI, 2014, vol. 45, no. 2, pp. 78–106 [TsAGI Science Journal (Engl. Transl.), vol. 45, nos. 3–4, pp. 293–327].

    Google Scholar 

  20. Costes, M., Renaud, T., and Rodriguezm, B., Rotorcraft Simulations: A Challenge for CFD, Int. Journal of Computational Fluid Dynamics, 2012, vol. 26, nos. 6-8, pp. 383–405.

    Article  MathSciNet  Google Scholar 

  21. Costes, M., Renaud, T., Rodriguez, B., and Reboul, G., Application of Vorticity Confinement to Rotor Wake Simulations, Int. Journal of Engineering Systems, Modelling and Simulation, 2012, vol. 4, nos. 1–2, pp. 102–112.

    Article  Google Scholar 

  22. Dehaeze, F. and Barakos G.N., Hovering Rotor Computations Using an Aeroelastic Blade Model, The Aeronautical Journal, 2012, vol. 116, no. 1180, pp. 621–649.

    Article  Google Scholar 

  23. Abalakin, I.V., Bakhvalov, P.A., Bobkov, V.G., Kozubskaya, T.K., and Anikin, V.A., Numerical Simulation of Aerodynamic and Acoustic Characteristics of a Ducted Rotor, Matematicheskoe Modelirovanie, 2015, vol. 27, no. 10, pp. 125–144 [Mathematical Models and Computer Simulation (Engl. Transl.), 2016, vol. 8, no. 3, pp. 309–324].

    MATH  Google Scholar 

  24. Abalakin, I.V., Anikin, V.A., Bakhvalov, P.A., Bobkov, V.G., and Kozubskaya, T.K., Numerical Investigation of the Aerodynamic and Acoustic Properties of a Shrouded Rotor, Izv. RAN. Mekhanika Zhidkosti i Gaza, 2016, vol. 51, no. 3, pp. 130–145 [Fluid Dynamics (Engl. Transl.), 2016, vol. 51, no. 3, pp. 419–433].

    MATH  Google Scholar 

  25. Suvorov, A.S., Korotin, P.I., and Sokov, E.M., Finite Element Method for Simulating Noise Emission Generated by Inhomogeneities of Bodies Moving in a Turbulent Fluid Flow, Akusticheskii Zhurnal, 2018, vol. 64, no. 6, pp. 756–767 [Acoustical Physics (Engl. Transl.), 2018, vol. 64, no. 3, pp. 778–788].

    Google Scholar 

  26. Volkov, K., Numerical Analysis of Navier–Stokes Equations on Unstructured Meshes, in Handbook on Navier–Stokes Equations: Theory and Analysis, Campos, D., Ed., New York: Nova Science, 2016, pp. 365–442.

    Google Scholar 

  27. Volkov, K., Multigrid and Preconditioning Techniques in CFD Applications, in CFD Techniques and Thermo-Mechanics Applications, Driss, Z., Necib, B., Zhang, H.-C., Eds., Springer, 2018, pp. 83–149.

    Chapter  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Science and Higher Education of the Russian Federation during the implementation of the project “Fundamental Foundations of Mechanics, Monitoring and Control Systems for Unmanned Aircraft Systems with Shaping Structures Deeply Integrated with Power Plants, and Unique Properties Not Used Today in Manned Aviation”, no. FEFM-2020-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Chernyshov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 4, pp. 66 - 73.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisenko, P.V., Bulat, P.V., Chernyshov, P.S. et al. Aeroacoustic Characteristics of a Quadcopter Impeller in Vertical Take-Off and Landing Mode. Russ. Aeronaut. 64, 661–669 (2021). https://doi.org/10.3103/S1068799821040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821040103

Keywords

Navigation