Skip to main content
Log in

Experimental Study of the Fatigue Stiffness Degradation for the Carbon Fiber Reinforced Plastic at Variable Temperature

  • Structural Mechanics and Strength of Flight Vehicles
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2019

This article has been updated

Abstract

The paper represents the results of the experimental study on variation of the longitudinal elastic modulus and Poisson’s ratio for the carbon fiber specimens under fatigue loading at variable temperature. The approximating relations reflecting the test data are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Moreira, R.D.F., de Moura, M.F.S.F., Figueiredo, M.A.V., Fernandes, R.L., and Gonçalves, J.P.M., Characterisation of Composite Bonded Single-Strap Repairs under Fatigue Loading, International Journal of Mechanical Sciences, 2015, vol. 103, pp. 22–29.

    Article  Google Scholar 

  2. Semin, M.I. and Strelyaev, D.V., Raschety soedinenii elementov kostruktsii iz kompozitsionnykh materialov na prochnost’ i dolgovechnost’ (Stress and Durability Analysis of the Composite Structural Joints), Moscow: LATMES, 1996.

    Google Scholar 

  3. Makhmutov, N.A., Dumanskii, A.M., and Strekalov, V.B., Computational and Experimental Definition of the Fatigue Resistance of the Carbon Fiber Reinforced Plastics and Their Structural Joints), Zavodskaya Laboratoriya. Diagnostika Materialov, 2006, vol. 72, no. 6, pp. 41–46.

    Google Scholar 

  4. Mikhailov, S.A., Girfanov, A.M., Bochkareva, A.B., and Fal’ko, A.S., Dependence of Helicopter Lifting System Loading on Temperature Variations in Composite Material Properties, Izv. Vuz. Av. Tekhnika, 2008, vol. 51, no. 1, pp. 13–16 [Russian Aeronautics (Engl. Transl.), vol. 51, no. 1, pp. 11–15].

    Google Scholar 

  5. Luat, D.Ch., Lurie, S.A., and Dudchenko, A.A., Modeling of the Properties Degradation due to Cracking and Delamination for the Static and Cyclic Loadings, Journal on Composite Mechanics and Design, 2008, vol. 14, no. 4, pp. 623–637.

    Google Scholar 

  6. Mikhailov, S.A., Girfanov, A.M., Bochkareva, A.B., and Fal’ko, A.S., Influence of Climatic Operational Conditions of a Helicopter on Physico-Mechanical Properties of Composite Materials, Izv. Vuz. Av. Tekhnika, 2007, vol. 50, no. 4, pp. 11–14 [Russian Aeronautics (Engl. Transl.), vol. 50, no. 1, pp. 362–367].

    Google Scholar 

  7. Stepnov, M.N., Chernyshev, S.L., Kovalev, I.E., and Zimin, A.V., Kharakteristiki soprotivleniya ustalosti. Rashetniye metody otsenki (Fatigue Resistance Characteristics. Computational Methods of Evaluation), Moscow: Tekhnologiya Mashinostroeniya, 2010.

    Google Scholar 

  8. Kostin, V.A., Mikhailov, S.A., Nikolaev, E.I., and Gerasimov, A.I., Adjustment of Elasticity Characteristics of a Composite Elastic Hub of Helicopter Main Rotor for a Range of Operational Temperature Conditions, Izv. Vuz. Av. Tekhnika, 2011, vol. 54, no. 3, pp. 9–12 [Russian Aeronautics (Engl. Transl.), vol. 54, no. 3, pp. 242–246].

    Google Scholar 

  9. Bobryshev, A.N., Galimov, E.R., Lakhno, A.V., Voronov, P.B., and Abdullin, I.A., Durability Analysis of the Polymer Composites by Means of Kinetic Fracture Concept, Vestnik Kazanskogo Tekhnologicheskogo Universiteta, 2015, vol. 18, no. 14, pp. 23–26.

    Google Scholar 

  10. Blaznov, A.N., Savin, V.F., Portnov, E.A., Samoilenko, V.V., and Firsov, V.V., Fatigue Strength of the Basalt and Fiberglass Plastics under Longitudinal Bending and Tension, Polzunovskii Vestnik, 2015, no. 3, pp. 4–7.

  11. Stens, C. and Middendorf, P., Computationally Efficient Modelling of the Fatigue Behaviour of Composite Materials, International Journal of Fatigue, 2015, vol. 80, pp. 69–75.

    Article  Google Scholar 

  12. Kasumov, E.V., On the Possibility of Structural Fatigue Properties Estimation at the Early Stages of Design Analysis, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 1, pp. 24–29 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 1, pp. 30–36].

    MathSciNet  Google Scholar 

  13. Eremin, A.V., Byakov, A.V., Lyubutin, P.S., and Panin, S.V., Development of Acoustic-Optical Approach for Structural Health Monitoring of Composite Materials under Cyclic Loading, Izv. Vuz. Fizika, 2016, vol. 59, no. 7–2, pp. 49–54.

    Google Scholar 

  14. Stepanova, L.N., Petrov, M.G., Chernova, V.V., Kozhemyakin, V.L., and Katarushkin, S.A., Investigation of Inelastic Properties of Carbon Fiber Reinforced Plastic During Cycling Tests of Samples by Methods of Acoustic Emission and Strain Gauging, Deformatsiya i Razrusheniye Materialov, 2016, no. 5, pp. 37–41.

  15. Mozgovoi, N.I. and Mozgovaya, Ya.G., Development of Hardware and Software for the Control of Internal Defects and Residual Resource of Engineered Structures and Parts Made of Fiberglass, Obrabotka Metallov (Tekhnologiya, Oborudovaniye, Instrumenty), 2016, no. 4, pp. 6–15.

  16. Kablov, E.N., Startsev, O.V., Krotov, A.S., and Kirillov, V.N., Climatic Aging of Composite Aviation Materials: I. Aging Mechanisms, Deformatsiya i Razrushenie Materialov, 2010, no. 11, pp. 19–27 [Russian Metallurgy (Metally) (Engl. Transl.), vol. 2011, no. 10, pp. 993–1000].

  17. Kablov, E.N., Startsev, O.V., Krotov, A.S., and Kirillov, V.N., Climatic Aging of Composite Aviation Materials: II. Relaxation of the Initial Structural Nonequilibrium and Through-Thickness Gradient of Properties, Deformatsiya i Razrushenie Materialov, 2010, no. 12, pp. 40–46 [Russian Metallurgy (Metally) (Engl. Transl.), vol. 2011, no. 10, pp. 1001–1007].

  18. Kablov, E.N., Startsev, O.V., Krotov, A.S., and Kirillov, V.N., Climatic Aging of Composite Aviation Materials: III. Significant Aging Factors, Deformatsiya i Razrushenie Materialov, 2011, no. 1, pp. 34–40 [Russian Metallurgy (Metally) (Engl. Transl.), vol. 2012, no. 4, pp. 323–329].

  19. Valishin, A.A., Stepanova, T.S., and Kartashov, E.M., Strength and Longevity of Polymers ad Composites under Variable Temperature—Force External Conditions, Mekhanika Kompozitsionnykh Materialov i Konstruktsii, 2008, vol. 14, no. 4, pp. 547–560.

    Google Scholar 

  20. Daggumati, S., De Baere, I., Van Paepegem, W., Degrieck, J., Xu, J., Lomov, S.V., and Verpoest, I., Fatigue and Post-Fatigue Stress—Strain Analysis of a 5-Harness Satin Weave Carbon Fibre Reinforced Composite, Composites Science and Technology, 2013, vol. 74, pp. 20–27.

    Article  Google Scholar 

  21. De Baere, I., Van Paepegem, W., and Degrieck, J., On the Design of End Tabs for Quasistatic and Fatigue Testing of Fibre-Reinforced Composites, Polymer Composites, 2009, vol. 30, no. 4, pp. 381–390.

    Article  Google Scholar 

  22. Strizhius, V.E., Technique for Fatigue Life Analysis of Aircraft Structural Elements with Use of Fatigue Ratings, Nauchnyi Vestnik MGTU GA, 2008, no. 130, pp. 47–59.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fedotov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, A.A., Tsipenko, A.E. Experimental Study of the Fatigue Stiffness Degradation for the Carbon Fiber Reinforced Plastic at Variable Temperature. Russ. Aeronaut. 62, 14–21 (2019). https://doi.org/10.3103/S1068799819010033

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799819010033

Keywords

Navigation