Skip to main content
Log in

Estimation of the Combustion Chamber Shell Working Capacity for the Reusable Liquid-Propellant Rocket Engine

  • Aircraft and Rocket Engine Design and Development
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

On the base of the simplified analytical model for the bimetallic shell of the combustion chamber of the reusable liquid-propellant rocket engine, the analysis of the loading of connectors between the shell walls and the accumulation of inelastic deformations in the inner wall material was carried out. The results obtained can be used for evaluation of the maximal number of engine operation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feodos’ev, V.I., Osnovy tekhniki raketnogo poleta (Fundamentals of the Rocket Flying Technique), Moscow: Nauka, Fizmatlit, 1981.

    Google Scholar 

  2. Dobrovol’skii, M.V., Zhidkostnye raketnye dvigateli. Osnovy proektirovanija (Liquid Propellant Rocket Engines. Fundamentals of Design), Yagodnikov, D.A., Ed., Moscow: Izd. MGTU im. N.E. Baumana, 2006.

  3. Moiseev, V.A., Tarasov, V.A., Kolmykov, V.A., and Filimonov, A.S., Tekhnologiya proizvodstva zhidkostnykh raketnykh dvigatelei (Production Engineering of Liquid-Propellant Engines), Moscow: Izd. MGTU im. N.E. Baumana, 2008.

    Google Scholar 

  4. Vorobei, V.V. and Loginov, V.E., Tekhnologiya proizvodstva zhidkostnykh raketnykh dvigatelei (Production Engineering of the Liquid-Propellant Engines), Moscow: MAI, 2001.

    Google Scholar 

  5. Balabukh, L.I., Kolesnikov, K.S., Zarubin, V.S., et al., Osnovy stroitel’noi mekhaniki raket (Fundamentals of Structural Mechanics of Rockets), Moscow: Vysshaya Shkola, 1969.

    Google Scholar 

  6. Gusenkov, A.P. and Kotov, P.I., Malotsiklovaya ustalost’ pri neizotermicheskom nagruzhenii (Low-Cycle Fatigue under Non-Isothermal Loading), Moscow: Mashinostroenie, 1983.

    Google Scholar 

  7. Aleksandrov, D.A. and Zarubin, V.S., Fracture Criteria of Heat-Stressed Structure Materials, Mashinostroenie. Entsiklopediya (Mechanical Engineering. Encyclopedia), Moscow: Mashinostroenie, 1994, vol. 1, pp. 176–180.

    Google Scholar 

  8. Zarubin, V.S. and Kuvyrkin, G.N., Mathematical Modeling of Thermomechanical Processes under Intense Thermal Effect, Teplofizika Vysokikh Temperatur, 2003, vol. 41, no. 2, pp. 300–309 [High Temperature (Engl. Transl.), 2003, vol. 41, no. 2, pp. 257—265].

    Google Scholar 

  9. Zarubin, V.S., Modelirovanie (Modeling), Moscow: Akademiya, 2013.

    Google Scholar 

  10. Golovanov, A.I., Numerical Modeling of Large Elastoplastic Strains in Terms of Principal Stretches. I. Kinematics of Elastoplastic Strains, Izv. Vuz. Av. Tekhnika, 2010, vol. 53, no. 2, pp. 30–33 [Russian Aeronautics (Engl. Transl.), vol. 53, no. 2, pp. 161–166].

    Google Scholar 

  11. Golovanov, A.I., Numerical Modeling of Large Elastoplastic Strains in Terms of Principal Stretches. II. Physical Relations, Calculation Algorithm, Izv. Vuz. Av. Tekhnika, 2010, vol. 53, no. 3, pp. 3–6 [Russian Aeronautics (Engl. Transl.), vol. 53, no. 3, pp. 243–249].

    Google Scholar 

  12. Malinin, N.N., Prikladnaya teoriya plastichnosti i polzuchesti (Applied Theory of Plasticity and Creep), Moscow: Mashinostroenie, 1975.

    Google Scholar 

  13. Mishchenko, A.V. and Nemirovskii, Yu.V., Metal Creep Model with the Initial Strain Discontinuity and Functional Material Constants, Izv. Vuz. Av. Tekhnika, 2009, vol. 52, no. 1, pp. 20–24 [Russian Aeronautics (Engl. Transl.), vol. 52, no. 1, pp. 30–36].

    Google Scholar 

  14. Feodos’ev, V.I., Prochnoct’ teplonapryazhennykh uzlov zhidkostnykh raketnykh dvigatelei (Strength of Heat-Stressed Units of Liquid-Propellant Engines), Moscow: Oborongiz, 1963.

    Google Scholar 

  15. Zarubin, V.S., Zimin, V.N., and Kuvyrkin, G.N., An Approximate Analysis of the Inner Wall Loading of a Bimetallic Shell of Reusable Rocket Engine Chamber, Aerokosmicheskii Nauchnyi Zhurnal, 2016, no. 5, pp. 31–43.

    Google Scholar 

  16. Zarubin, V.S., Kuvyrkin, G.N., and Pugachev, O.V., Mechanical Interaction of the Walls of the Bimetallic Shell of the Liquid Rocket Engine Chamber During Diffusion Soldering, Aerokosmoicheskii Nauchnyi Zhurnal, 2015, no. 4, pp. 51–63.

    Google Scholar 

  17. Firsanov, V.V. and Tishkov, V.V., Elastoplastic Stresses of a Shell of Revolution Made from the Material with Linear Hardening Loaded by a Force at the Pole, Izv. Vuz. Av. Tekhnika, 2012, vol. 55, no. 4, pp. 30–33 [Russian Aeronautics (Engl. Transl.), vol. 55, no. 4, pp. 366–372].

    Google Scholar 

  18. Spravochnik po tsvetnym metallam. Khromistaya bronza, (Handbook on Nonferrous Metals. Chromium Bronze) URL: https://doi.org/libmetal.ru/bronze/chrombronze.htm.

  19. Rabotnov, Yu.N., Creep Problems in Structural Members, Amsterdam: North-Holland Pub. Co., 1969.

    MATH  Google Scholar 

  20. Rabotnov, Yu.N. and Mileiko, S.T., Kratkovremennaya polzuchest’ (Short-Term Creep), Moscow: Nauka, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kuvyrkin.

Additional information

Original Russian Text © V.S. Zarubin, V.N. Zimin, G.N. Kuvyrkin, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2018, No. 3, pp. 100–107.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarubin, V.S., Zimin, V.N. & Kuvyrkin, G.N. Estimation of the Combustion Chamber Shell Working Capacity for the Reusable Liquid-Propellant Rocket Engine. Russ. Aeronaut. 61, 425–433 (2018). https://doi.org/10.3103/S1068799818030169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799818030169

Keywords

Navigation