Skip to main content
Log in

An Anthropocentric Approach for Solving the Problem of Optimal Automatic Landing Flare

  • Flight Dynamics and Control of Flight Vehicles
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

In this paper, the algorithm of automatic landing flare is designed based on the maximum coordination between the trajectories, which are convenient for the pilot to operate in manual mode and the one attained by the auto-landing system according to the algorithm of optimal flight control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oppelt, W. and Vossius, G., Der Mensch als Regler, Berlin: VEB Verlag Technik, 1970.

    Google Scholar 

  2. Zaporozhets, A.V. and Kostyukov, V.M., Proektirovanie sistem otobrazheniya informatsii (Design of Information Display Systems), Moscow: Mashinostoenie, 1992.

    Google Scholar 

  3. Efremov, A.V., Koshelenko, A.V., and Tyaglik, M.S., Improvement of Semi-Scale Simulation Technique and Subsystems for Investigation of Aircraft Manual Control, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 31–37 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 4, pp. 394–400].

    Google Scholar 

  4. Efremov, A.V., Koshelenko, A.V., Tyaglik, M.S., Tyumentsev, Yu.V., and Wenqian, Tan, Mathematical Modeling of Pilot Control Response Characteristics in Studying the Manual Control Tasks, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 2, pp. 34–40 [Russian Aeronautics (Engl.Transl.), vol. 58, no. 2, pp. 173–179].

    Google Scholar 

  5. Kostyukov, V.M., Trinh, V.T., and Nguyen, N.M., Airliner Automatic Landing Optimal Trajectory Shaping Based on Anthropocentric Principle, Vestnik MAI, 2016, vol. 23, no. 1, pp. 123–135.

    Google Scholar 

  6. Kostyukov, V.M., Trinh, V.T., and Nguyen, N.M., Realization of Passenger Plane Auto-Land Desired Trajectory Shaping Algorithm Based on Anthropocentric Principle, Vestnik MAI, 2016, vol. 23, no. 3, pp. 84–95.

    Google Scholar 

  7. Merriam, C.W., Optimization Theory and the Design of Feedback Control Systems, New York: McGraw-Hill Electronic Series, 1967.

    MATH  Google Scholar 

  8. Averkiev, N.F., Vlasov, S.A., Salov, V.V., and Kiselev, V.V., Route Optimization of the Aircraft Flight, Izv.Vuz. Av. Tekhnika, 2016, vol. 59, no. 4, pp. 33–37 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 4, pp. 474–479].

    Google Scholar 

  9. Bakulin, V.N., Borzykh, S.V., and Voronin, V.V., Space Vehicle Landing Dynamics at Failure of Landing Gear, Izv.Vuz. Av. Tekhnika, 2016, vol. 59, no. 1, pp. 22–26 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 1, pp. 23–28].

    Google Scholar 

  10. Garkushenko, V.I. and Lazareva, P.A., To a Problem of Aircraft Control System Design with Given Dynamic Parameters, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 21–25 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 4, pp. 383–387].

    Google Scholar 

  11. Afanas’ev, V.A., Degtyarev, G.L., Meshchanov, A.S., and Sirazetdinov, R.T., Landing of Flight Vehicles without the Landing Gear, Izv.Vuz. Av. Tekhnika, 2014, vol. 57, no. 4, pp. 11–13 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 4, pp. 339–343].

    Google Scholar 

  12. Denisov, K.G. and Rodnishchev, N.E., Extreme Deviations of Landing Parameters for Heavy Aircraft, Izv.Vuz. Av. Tekhnika, 2014, vol. 57, no. 1, pp. 43–46 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 1, pp. 55–60].

    Google Scholar 

  13. Bryson, A.E. and Ho, Yu-Shi., Applied Optimal Control: Optimization, Estimation and Control, New York: Taylor & Francis Group, 1975.

    Google Scholar 

  14. Speedy, C.B., Brown, B.F., and Goodwin, G.C., Control Theory: Identification and Optimal Control, Edinburgh: Oliver and Boyd, 1970.

    MATH  Google Scholar 

  15. Garkushenko, V.I. and Vinogradov, S.S., Improvement of Handling Qualities for the Aircraft Longitudinal Motion, Izv.Vuz. Av. Tekhnika, 2016, vol. 59, no. 4, pp. 46–51 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 4, pp. 489–494].

    Google Scholar 

  16. Petunin, V.I. and Neugodnikova, L.M., Method for Constructing Automatic Control Systems with Restriction on Aircraft Critical Parameters, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 3, pp. 28–34 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 3, pp. 279–285].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Trinh.

Additional information

Original Russian Text © V.T. Trinh, N.M. Nguyen, N.T. Dang, K.A. Nguyen, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2018, No. 2, pp. 71–79.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trinh, V.T., Nguyen, N.M., Dang, N.T. et al. An Anthropocentric Approach for Solving the Problem of Optimal Automatic Landing Flare. Russ. Aeronaut. 61, 220–229 (2018). https://doi.org/10.3103/S1068799818020101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799818020101

Keywords

Navigation