Skip to main content
Log in

Optimized Flat-Chamber Electrobaric Membrane System for the Processing of Industrial Solutions

  • Published:
Russian Engineering Research Aims and scope

Abstract

The development of an optimized flat-chamber electrobaric membrane system is considered. In the design of electromembrane systems for the separation of solutions in the chemical industry and in manufacturing, efficient use of polyamide 6 (PA6) in the workpiece may be ensured. Two-loop supply of the charged solution (successive circulation) is promising in such electrobaric membrane systems. The key to the design is to determine the total area of membrane filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Myronchuk, V., Zmievskii, Yu., Dzyazko, Yu., et al., Whey desalination using polymer and inorganic membranes: operation conditions, Acta Period. Technol., 2018, vol. 49, pp. 103–115.

    Article  Google Scholar 

  2. Svittsov, A.A., Vvedenie v membrannuyu tekhnologiyu (Introduction into Membrane Technology), Moscow: DeLi Print, 2007.

  3. Pervov, A.G., Sovremennye vysokoeffektivnye tekhnologii ochistki pit’evoi i tekhnicheskoi vody s primeneniem membrane: obratnyi osmos, nanofil’tratsiya, ul’trafil’tratsiya (Modern High-Effective Purification Technologies of Drinking and Industrial Waters Using Membranes: Reverse Osmosis, Nanofiltration, and Ultrafiltration), Moscow: ASV, 2009.

  4. Myronchuk, V., Zmievskii, Yu., Dzyazko, Yu., et al., Electrodialytic whey demineralization involving polymer-inorganic membranes, anion exchange resin and graphene-containing composite, Acta Period. Technol., 2019, vol. 50, pp. 163–171.

    Article  Google Scholar 

  5. Lazarev, S.I., Kovaleva, O.A., Popov, R.V., et al., Electromembrane purification of waste water of chemical production from ions Cr6+, Zn2+, \({\text{SO}}_{4}^{{2 - }}\), Cl, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2018, vol. 61, nos. 4–5, pp. 119–125.

    Article  Google Scholar 

  6. Vasil’eva, V.I., Akberova, E.M., and Zabolotskii, V.I., Electroconvection in systems with heterogeneous ion-exchange membranes after thermal modification, Russ. J. Electrochem., 2017, vol. 53, no. 4, pp. 398–410.

    Article  Google Scholar 

  7. Niftaliev, S.I., Kozaderova, O.A., Kim, K.B., and Malyavina, Yu.M., Use of electrodialysis for the treatment of nitrogen-containing wastewaters from a mineral fertilizer enterprise, Khim. Prom. Segodnya, 2014, no. 7, pp. 52–56.

  8. Zmievskii, Y., Kyrychuk, I., and Myronchuk, V., Using of direct contact membrane distillation for wastewater treatment obtained after whey processing, Carpathian J. Food Sci. Technol., 2016, vol. 8, no. 2, pp. 5–10.

    Google Scholar 

  9. Pismenskaya, N.D., Melnikova, E.D., Rybalkina, O.A., and Nikonenko, V.V., The impact of long-time operation of an anion-exchange membrane AMX-Sb in the electrodialysis desalination of sodium chloride solution on the membrane current-voltage characteristic and the water splitting rate, Membr. Membr. Technol., 2019, vol. 1, no. 2, pp. 88–98.

    Article  Google Scholar 

  10. Sarapulova, V.V., Pasechnaya, E.L., Titorova, V.D., et al., Electrochemical properties of ultrafiltration and nanofiltration membranes in solutions of sodium and calcium chloride, Membr. Membr. Technol., 2020, vol. 2, no. 5, pp. 332–350.

    Article  Google Scholar 

  11. Kovaleva, O.A., Lazarev, S.I., Kovalev, S.V., Kochetov, V.I., and Lazarev, D.S., RF Patent 2622659, Byull. Izobret., 2017, no. 17.

  12. Lazarev, S.I., Kovalev, S.V., Kovaleva, O.A., and Konovalov, D.N., Design and calculation of effective separation area of flat-chamber electrobaromembrane equipment, Chem. Petrol. Eng., 2019, vol. 55, nos. 5–6, pp. 353–360.

    Article  Google Scholar 

  13. Kochetov, V.I., Lazarev, S.I., Kovalev, S.V., et al., Improved design of an electrobaromembrane apparatus and calculation of the parameters of the housing chamber when subjected to the effect of excess pressure, Chem. Petrol. Eng., 2018, vol. 54, nos. 1–2, pp. 82–86.

    Article  Google Scholar 

  14. Romanov, A.N., Fatigue crack propagation and a single curve of cyclic crack resistance of structural materials, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 5, pp. 382–389.

    Article  MathSciNet  Google Scholar 

  15. Romanov, A.N., Deformation resistance of metal construction materials upon cyclic loading, J. Mach. Manuf. Reliab., 2012, vol. 41, no. 4, pp. 299–305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lazarev.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Selivanov, Y.T., Selivanov, A.Y. et al. Optimized Flat-Chamber Electrobaric Membrane System for the Processing of Industrial Solutions. Russ. Engin. Res. 41, 1014–1021 (2021). https://doi.org/10.3103/S1068798X21110186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X21110186

Keywords:

Navigation