Skip to main content
Log in

Strength of Cracked Steel Structural Components at Negative Temperatures

  • Published:
Russian Engineering Research Aims and scope

Abstract

Predictions of the strength of cracked steel structural components at negative temperatures are considered. The elastoplastic stress–strain state of samples at destructive loads is studied by finite-element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Doronin, S.V., Lepikhin, A.M., Moskichev, V.V., and Shokhin, Yu.I., Modelirovanie prochnosti i razrusheniya nesushchikh konstruktsii tekhnicheskikh sistem (Modeling of Strength and Fracture of Supporting Constructions of Technical Systems), Novosibirsk: Nauka, 2005.

  2. Rozenshtein, I.M., Brittle fracture of welded steel constructions, Zavod. Lab.,Diagn. Mater., 2007, vol. 73, no. 3, pp. 53–57.

    Google Scholar 

  3. GOST (State Standard) 32578–2013: Cranes. Metal Structures. Requirements for Materials, Moscow: Standartinform, 2015.

  4. ISO 20332:2008: Cranes—Proof of Competence of Steel Structures, Geneva: Int. Stand. Org., 2008.

  5. Dugdale, D.S., Yielding of steel containing slits, J. Mech. Phys. Solids, 1960, vol. 8, pp. 100–104.

    Article  Google Scholar 

  6. Kovchik, S.E. and Morozov, E.M., Tekhnika razrusheniya i prochnost’ materialov: Spravochnoe posobie. Tom 3. Kharakteristiki kratkovremennoi treshchinostoikosti materialov i metody ikh opredeleniya (Fracture and Strength of Materials: Handbook, Vol. 3: Characteristics of Short Crack Resistance of Materials and Their Diagnostic Methods), Panasyuk, V.V., Ed., Kiev: Naukova Dumka, 1988.

  7. Barsom, J.M. and Rolf, S.T., Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, Englewood Cliffs, NJ: Prentice-Hall, 1987, 2nd ed.

    Google Scholar 

  8. Richard, H.A. and Sander, M., Ermuedungsrisse, Berlin: Springer-Verlag, 2012, 2nd ed.

    Book  Google Scholar 

  9. Zhu, X.K. and Joyce, J.A., Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization, Eng. Fract. Mech., 2012, vol. 85, pp. 1–46.

    Article  Google Scholar 

  10. Matvienko, Yu.G., Modeli i kriterii mekhaniki razrusheniya (Models and Criteria of Fracture Mechanics), Moscow: Fizmatlit, 2006.

  11. Kopel’man, L.A., Soprotivlyaemost’ svarnykh uzlov khrupkomu razrusheniyu (Resistance of Welded Joints to Brittle Fracture), Leningrad: Mashinostroenie, 1978.

  12. Tin’gaev, A.K., Critical temperatures of brittleness of the elements of metal constructions, Zavod. Lab., Diagn. Mater., 2004, no. 3, pp. 46–51.

  13. Kornev, V.M., Diagrams of quasibrittle fracture and a model of crack initiation near stress concentrated centers, Fiz. Mezomekh., 2015, no. 2, pp. 51–59.

  14. Naumenko, V.P. and Limanskii, I.V., Fracture resistance of sheet metals and thin-wall structures. Part 1. Critical review, Strength Mater., 2014, vol. 46, no. 1, pp. 18–37.

    Article  Google Scholar 

  15. Vadholm, T., Investigation of Low Temperature Toughness and Crack InitiationInWelded Structural Steels, Trondheim: Norw. Univ. Sci. Technol., 2014.

    Google Scholar 

  16. Kopel’man, L.A., Osnovy teorii prochnosti svarnykh konstruktsii (Fundamental theory of Strength of Welded Constructions), St. Petersburg: Lan’, 2010.

  17. Makhutov, N.A., Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost’ (Deformation Criteria of Fracture and Calculation of Construction Elements for Strength), Moscow: Mashinostroenie, 1981.

  18. Wessel, E.T., Clark, W.G., and Pryle, W.H., Fracture mechanics technology applied to heavy section steel structures, Proc. Second Int. Conf. on Fracture, Brighton, April 13–18,1969, New York: Springer-Verlag, 1969, no. 72.

  19. ASTM E399-90(1997): Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, West Conshohocken, PA: ASTM Int., 1997.

  20. Stress Intensity Factors Handbook, Murakami, Y., Ed., Oxford: Pergamon, 1987.

    Google Scholar 

  21. Barsom, J.M. and Rolfe, S.T., Kic transition-temperature behavior of A517-F steel, Eng. Fract. Mech., 1971, vol. 2, pp. 341–357.

    Article  Google Scholar 

  22. Biennial Report SSC-188 of Ship Structure Committee “Effect of Repeated Loads on The Low Temperature Fracture Behavior of Notched And Welded Plates,” Washington, DC: Ship Structure Committee, 1968.

  23. Andreev, V.V. and Anikovskii, V.V., Influence of test temperature on the static strength of welded joints of 10KhSND steel with sharp defects, Tr. Leningr. Politekh. Inst., 1974, no. 336, pp. 42–44.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sokolov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, S.A., Grachev, A.A. & Vasil’ev, I.A. Strength of Cracked Steel Structural Components at Negative Temperatures. Russ. Engin. Res. 40, 106–110 (2020). https://doi.org/10.3103/S1068798X20020203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X20020203

Keywords:

Navigation