Skip to main content
Log in

Creation and Shaping of Three-Dimensional Ultrafine-Grain Materials

  • Published:
Russian Engineering Research Aims and scope

Abstract

On account of their improved physicomechanical characteristics, materials with ultrafine-grain and nanocrystalline structure are of great interest in manufacturing and elsewhere. There has been considerable research on methods of producing such materials. The techniques most commonly used to produce three-dimensional ultrafine-grain materials are equal-channel angular pressing; cumulative rolling; intense rolling; and friction with mixing. However, little information is available regarding the influence of the shaping conditions on the structure and properties of three-dimensional ultrafine-grain materials. Accordingly, there is a pressing need to find effective structuring and shaping methods for the manufacture of parts from ultrafine-grain materials with enhanced performance. Analysis of structuring and shaping methods indicates that the production of high-quality parts from three-dimensional ultrafine-grain and nanocrystalline materials calls for the development of processes, equipment, and tools such that the physicomechanical characteristics and structure of the materials formed by intense plastic deformation are retained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Komura, S., Horita, Z., Nemoto, M., and Langdon, T.G., Influence of stacking fault energy on microstructural development in equal-channel angular pressing, J. Mater. Res., 1999, vol. 14, pp. 4044–4050.

    Article  Google Scholar 

  2. Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G., Factors influencing the equilibrium grain size in equalchannel angular pressing: role of Mg additions to aluminum, Metall. Mater. Trans. A, 1998, vol. 29, pp. 2503–2510.

    Article  Google Scholar 

  3. Han, B.Q., Mohamed, F.A., and Lavernia, E.J., Mechanical properties of iron processed by severe plastic deformation, Metall. Mater. Trans. A, 2003, vol. 34, pp. 71–83.

    Article  Google Scholar 

  4. Fukuda, Y., Oh-ishi, K., Horita, Z., and Langdon, T.G., Processing of a low-carbon steel by equal-channel angular pressing, Acta Mater., 2002, vol. 50, pp. 1359–1368.

    Article  Google Scholar 

  5. Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., et al., Influence of ECAP routes on the microstructure and properties of pure Ti, Mater. Sci. Eng., A, 2001, vol. 299, nos. 1–2, pp. 59–67.

    Article  Google Scholar 

  6. Liu, T., Zhang, W., Wu, S.D., et al., Mechanical properties of a two-phase alloy Mg–8%Li–1%Al processed by equal channel angular pressing, Mater. Sci. Eng., A, 2003, vol. 360, pp. 345–349.

    Article  Google Scholar 

  7. Semenova, I.P., Raab, G.I., Saitova, L.R., and Valiev, R.Z., The effect of equal-channel angular pressing on the structure and mechanical behavior of Ti–6Al–4V alloy, Mater. Sci. Eng., A, 2004, vol. 387, pp. 805–808.

    Article  Google Scholar 

  8. Fattah-alhosseini, A., Imantalab, O., Mazaheri, Y., and Keshavarz, M.K., Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process, Mater. Sci. Eng., A, 2016, vol. 650, pp. 8–14.

    Article  Google Scholar 

  9. Kashihara, K., Komi, Y., Terada, D., and Tsuji, N., Improvement of uniform elongation by low temperature annealing in Al–2.5% Mg alloy processed by accumulative roll bonding, Mater. Trans., 2015, vol. 56, pp. 803–807.

    Article  Google Scholar 

  10. Saito, Y., Utsunomiya, H., Tsuji, N., and Sakai, T., Novel ultra-high straining process for bulk materialsdevelopment of the accumulative roll-bonding (ARB) process, Acta Mater., 1999, vol. 47, pp. 579–583.

    Article  Google Scholar 

  11. Jamaati, R., Toroghinejad, M.R., and Edris, H., Effect of stacking fault energy on nanostructure formation under accumulative roll bonding (ARB) process, Mater. Sci. Eng., A, 2013, vol. 578, pp. 191–196.

    Article  Google Scholar 

  12. Toroghinejad, M.R., Ashrafizadeh, F., and Jamaati, R., On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083, Mater. Sci. Eng., A, 2013, vol. 561, pp. 145–151.

    Article  Google Scholar 

  13. Roy, S., Singh, D.S., Suwas, S., et al., Microstructure and texture evolution during accumulative roll bonding of aluminum alloy AA5086S, Mater. Sci. Eng., A, 2011, vol. 528, pp. 8469–8478.

    Article  Google Scholar 

  14. Rezaei, M.R., Toroghinejad, M.R., and Ashrafizadeh, F., Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy, J. Mater. Process. Technol., 2011, vol. 211, pp. 1184–1190.

    Article  Google Scholar 

  15. Shen, Y.F., Zhao, X.M., Sun, X., Wang, Y.D., and Zuo, L., Ultrahigh strength of ultrafine grained austenitic stainless steel induced by accumulative rolling and annealing, Scr. Mater., 2014. https://doi.org/10.1016/j.scriptamat.2014.05.001

    Google Scholar 

  16. Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V., Bulk nanostructured materials from severe plastic deformation, Progr. Mater. Sci., 2000, vol. 45, no. 2, pp. 103–189.

    Article  Google Scholar 

  17. Filippov, A.V., Nikonov, A.Y., Rubtsov, V.E., et al., Vibration and acoustic emission monitoring the stability of peakless tool turning: experiment and modeling, J. Mater. Process. Technol., 2017, vol. 246, pp. 224–234.

    Article  Google Scholar 

  18. Filippov, A.V., Rubtsov, V.E., and Tarasov, S.Y., Acoustic emission study of surface deterioration in tribocontacting, Appl. Acoust., 2017, vol. 117, pp. 106–112.

    Article  Google Scholar 

  19. Lychagin, D.V., Filippov, A.V., Novitskaia, O.S., et al., Friction-induced slip band relief of Hadfield steel single crystal oriented for multiple slip deformation, Wear, 2017, vols. 374–375, pp. 5–14.

    Google Scholar 

  20. Zhang, Y.S., Wei, Q.M., Niu, H.Z., et al., Formation of nanocrystalline structure in tantalum by sliding friction treatment, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 71–75.

    Article  Google Scholar 

  21. Zhang, Y.S., Zhang, P.X., Niu, H.Z., et al., Surface nanocrystallization of Cu and Ta by sliding friction, Mater. Sci. Eng., A, 2014, vol. 607, pp. 351–355.

    Article  Google Scholar 

  22. Tarasov, S.Y. and Rubtsov, V.Y., Shear instability in the subsurface layer of a material in friction, Phys. Solid State, 2011, vol. 53, pp. 358–362.

    Article  Google Scholar 

  23. Kolubaev, A., Tarasov, S., Sizova, O., and Kolubaev, E., Scale-dependent subsurface deformation of metallic materials in sliding, Tribol. Int., 2010, vol. 43, pp. 695–699.

    Article  Google Scholar 

  24. Tarasov, S.Y. and Kolubaev, A.V., Formation of surface layer with nanosize grain–subgrain structure due to friction of a copper-tool steel pair, Met. Sci. Heat Treat., 2010, vol. 52, pp. 183–188.

    Article  Google Scholar 

  25. Tarasov, S., Rubtsov, V., and Kolubaev, A., Subsurface shear instability and nanostructuring of metals in sliding, Wear, 2010, vol. 268, pp. 59–66.

    Article  Google Scholar 

  26. Tarasov, S.Y. and Kolubaev, A.V., Generation of shear bands in subsurface layers of metals in sliding, Phys. Solid State, 2008, vol. 50, pp. 844–847.

    Article  Google Scholar 

  27. Panin, V., Kolubaev, A., Tarasov, S., and Popov, V., Subsurface layer formation during sliding friction, Wear, 2002, vol. 249, pp. 860–867.

    Article  Google Scholar 

  28. Tarasov, S.Y., Lychagin, D.V., and Chumaevskii, A.V., Orientation dependence of subsurface deformation in dry sliding wear of Cu single crystals, Appl. Surf. Sci., 2013, vol. 274, pp. 22–26.

    Article  Google Scholar 

  29. Lychagin, D.V., Tarasov, S.Y., Chumaevskii, A.V., and Alfyorova, E.A., Macrosegmentation and strain hardening stages in copper single crystals under compression, Int. J. Plast., 2015, vol. 69, pp. 36–53.

    Article  Google Scholar 

  30. Tarasov, S.Y., Lychagin, D.V., Chumaevskii, A.V., et al., Subsurface deformation in copper single crystals during reciprocal sliding, Phys. Solid State, 2012, vol. 54, pp. 2034–2038.

    Article  Google Scholar 

  31. Filippov, A.V. and Gorbatenko, V.V., Influence of rake angle tool on plastic deformation in chip formation when cutting, Appl. Mech. Mater., 2014, vol. 682, pp. 525–529.

    Article  Google Scholar 

  32. Korovin, G.I., Filippov, A.V., Proskokov, A.V., and Gorbatenko, V.V., Influence of the geometrical parameters of the cutting blade on the formation of the plastic deformation region in OT4 titanium alloy, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2016, no. 3 (672), pp. 56–64.

    Google Scholar 

  33. Filippov, A.V. and Proskokov, A.V., Analysis of chipping during metal cutting by digital correlation speckle interferometry, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr., 2014, no. 2, pp. 100–113.

    Google Scholar 

  34. Tarasov, S.Yu., Filippov, A.V., Kolubaev, E.A., and Kalashnikova, T.A., Adhesion transfer in sliding a steel ball against an aluminum alloy, Tribol. Int., 2017, vol. 115, pp. 191–198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filippov.

Additional information

Original Russian Text © A.V. Filippov, E.O. Filippova, 2018, published in STIN, 2018, No. 1, pp. 6–10.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.V., Filippova, E.O. Creation and Shaping of Three-Dimensional Ultrafine-Grain Materials. Russ. Engin. Res. 38, 540–543 (2018). https://doi.org/10.3103/S1068798X18070067

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X18070067

Keywords

Navigation