Skip to main content
Log in

Quantum Size Effect and Shubnikov de Haas Oscillations in Transverse Magnetic Field in the Bi1 – xSbx Semiconductor Wires

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The transport properties, magnetoresistance, and Shubnikov–de Haas (ShH) oscillations of glass-coated Bi0.92Sb0.08 single-crystal wires with diameters of 180 nm to 2.2 μm and the (10\(\underline 1 \)1) orientation along the wire axis, which are prepared by liquid phase casting, have been studied. For the first time, it has been found that the energy gap ΔE increases by a factor of four with a decrease in the wire diameter d owing to the manifestation of the quantum size effect. This significant increase in the energy gap can occur under conditions of an energy–momentum linear dispersion relation, which is characteristic of both the gapless state and the surface states of a topological insulator. It has been shown that, in a strong magnetic field at low temperatures, a semiconductor–semimetal transition occurs; it is evident in the temperature dependences of resistance in a magnetic field. An analysis of the ShH oscillations, namely, the phase shift of the Landau levels and the features of the angular dependences of the oscillation periods, suggests that the combination of the manifestation of the topological insulator properties and the quantum size effect leads to the occurrence of new effects in low-dimensional structures, which require new scientific approaches and applications in microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Lerner, L.S., Cuff, F., and Williams, L.N., Energy-band parameters and relative motions in the Bi–Sb alloy system near the semimetal–semiconductor transition, Rev. Mod. Phys., 1968, vol. 40, no. 4, p. 770.

    Article  Google Scholar 

  2. Golin, S., Band model for bismuth–antimony alloy, Phys. Rev., 1968, vol. 176, no. 3, p. 830.

    Article  Google Scholar 

  3. Brandt, N.B., Semenov, M.V., and Falkovsky, L.A., Experiment and theory on the magnetic susceptibility of Bi–Sb alloys, J. Low Temp. Phys., 1977, vol. 27, p. 75.

    Article  Google Scholar 

  4. Mironova, G.A., Sudakova, M.V., and Ponomarev, Ya.G., Investigation of the band structure of Bi1 – xSbx semiconductor alloys, Zh. Eksp. Teor. Fiz., 1980, vol. 76, no. 5, p. 1832.

    Google Scholar 

  5. Tang, S. and Dresselhaus, M.S., Electronic phases, band gaps, and band overlaps of bismuth antimony nanowires, Phys. Rev. B., 2014, vol. 89, no. 4, p. 045424. https://doi.org/10.1103/PhysRevB.89.045424

    Article  Google Scholar 

  6. Cornett, J.E. and Oded, R., Thermoelectric figure of merit calculations for semiconducting nanowires, Appl. Phys. Lett., 2011, vol. 98, no. 18, p. 182104. https://doi.org/10.1063/1.3585659

    Article  Google Scholar 

  7. Fu, L. and Kane, C., Topological insulators with inversion symmetry, Phys. Rev. B., 2007, vol. 76, no. 4, p. 045302. https://doi.org/10.1103/PhysRevB.76.045302

    Article  Google Scholar 

  8. Qi, X.L., Zang, L.R., and Zhang, S.C., Inducing a magnetic monopole with topological surface states, Science, 2009, vol. 323, no. 5918, p. 1184. https://doi.org/10.1126/science.1167747

    Article  MATH  Google Scholar 

  9. Moore, J.E., The birth of topological insulators, Nature, 2010, vol. 464, no. 7286, p. 194.

    Article  Google Scholar 

  10. Hsieh, D., Xia, Y., Quian, D., Wray, L., et al., A tunable topological insulator in the spin helical Dirac transport regime, Nature, 2009, vol. 460, no. 7257, p. 1101. https://doi.org/10.1038/nature08234

    Article  Google Scholar 

  11. Tang, S. and Dresselhaus, M.S., Constructing anisotropic Single-Dirac-Cones in Bi1 – xSbx thin films, Nano Lett., 2012, vol. 12, no. 4, p. 2021.

    Article  Google Scholar 

  12. Brandt, N.B., Gitsu, D.V., Nikolaeva, A.A., and Ponomarev, Ya.G., Investigation of size effects in thin cylindrical bismuth single crystals in a magnetic field, J. Exp. Theor. Phys., 1977, vol. 45, no. 6, p. 1226.

    Google Scholar 

  13. Nikolaeva, A., Huber, T.E., Gitsu, D., and Konopko, L., Diameter-dependent thermopower of bismuth nanowires, Phys. Rev. B, 2008, vol. 77, no. 3, p. 035422. https://doi.org/10.1103/PhysRevB.77.035422

    Article  Google Scholar 

  14. Konopko, L.A., Nikolaeva, A.A., Huber, T.E., and Ansermet, J.-P., Surface states transport in topological insulator Bi0.83Sb0.17 nanowires, J. Low Temp. Phys., 2016, vol. 185, no. 5, p. 673.

    Article  Google Scholar 

  15. Konopko, L., Nikolaeva, A., Huber, T.E., and Rogacki, K., Quantum oscillations in nanowires of topological insulator Bi0.83Sb0.17, Appl. Surf. Sci., 2020, vol. 526, p. 146750. https://doi.org/10.1016/j.apsusc.2020.146750

    Article  Google Scholar 

  16. Nikolaeva, A.A., Konopko, L.A., Huber, T.E., Ansermet, J.-Ph., et al., Thermoelectric phenomena in Bi1 – xSbx nanowires in semimetal and gapless region, J. Nanoelectron. Optoelectron, 2012, vol. 7, no. 7, p. 671.

    Article  Google Scholar 

  17. Taskin, A.A., Segawa, K., and Ando, Y., Oscillatory angular dependence of the magnetoresistance in a topological insulator oscillations in a topological insulator Bi1 – xSbx , Phys. Rev. B, 2010, vol. 82, no. 12, p. 121302. https://doi.org/10.1103/PhysRevB.82.121302

    Article  Google Scholar 

  18. Red’ko, N.A., Kagan, I.D., and Volkov, N.P., Electronic topological transition in an n-BiSb semiconductor alloy in the quantum limit range of magnetic fields for H II C2, J. Exp. Theor. Phys., 2010, vol. 111, no. 2, p. 241.

    Article  Google Scholar 

  19. Taskin, A.A. and Ando, Y., Quantum oscillations in a topological insulator Bi1 – xSbx , Phys. Rev. B., 2009, vol. 80, no. 8, p. 085303. https://doi.org/10.1103/PhysRevB.80.085303

    Article  Google Scholar 

  20. Qu, D.-X., Hor, Y.S., Xiong, J., Cava, R.J., et al., Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3Science, 2010, vol. 329, no. 5993, p. 821.

    Article  Google Scholar 

  21. Shoenberg, D., Magnetic Oscillations in Metals, Ser. Monographs on Physics, Cambridge: Cambridge Univ. Press, 2009.

Download references

Funding

This work was carried out with the financial support of the Government Program of the Ministry of Education, Culture, and Innovations of Moldova (project no. 20.80009.5007.02) and the American Foundations NSF through STC CIQM 1231319, the Boeing Company, and the Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Nikolaeva or T. E. Huber.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Myshkina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, A.A., Konopko, L.A., Huber, T.E. et al. Quantum Size Effect and Shubnikov de Haas Oscillations in Transverse Magnetic Field in the Bi1 – xSbx Semiconductor Wires. Surf. Engin. Appl.Electrochem. 58, 674–681 (2022). https://doi.org/10.3103/S1068375522060114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522060114

Keywords:

Navigation