Skip to main content
Log in

Possibilities and Prospects for Improving the Tribological Properties of Titanium and Its Alloys by Electrospark Deposition

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper discusses the essence and technological characteristics of the process of electrospark deposition (ESD), its advantages and disadvantages with a view to its application for improving the tribological properties of titanium and its alloys. A summary of the available data and results in the literature devoted on the ESD of titanium and its alloys has been made. Based on the published data, a comparative analysis of the technical parameters and technological capabilities of the most common equipment, including contactless ESD, is presented. The geometrical and physico-mechanical characteristics of the coatings obtained with different equipment and the nature of their change depending on the technological parameters of the ESD mode and the type of the anode and cathode materials are shown. A summary of the data on the wear resistance of the coatings obtained with different electrode materials and modes are given. It has been demonstrated that ESD can be successfully applied to improve the wear resistance of titanium surfaces. Suitable electrode materials and process parameters for ESD on titanium alloys are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Titanium and Titanium Alloys: Fundamentals and Applications, Leyens, Ch. and Peters, M., Eds., Weinheim, Germany: Wiley-VCH, 2003, p. 513. https://doi.org/10.1002/3527602119

    Book  Google Scholar 

  2. Gorynin, I.V. and Chechulin, B.B., Titan v mashinostroenii (Titanium in Mechanical Engineering), Moscow: Mashinostroenie, 1990.

  3. Williams, J.C., Alternate materials choices—some challenges to the increased use of titanium alloys, Mater. Sci. Eng. A, 1999, vol. 263, p. 107.

    Article  Google Scholar 

  4. Dong, H., Tribological properties of titanium-based alloys, in Surface Engineering of Light Alloys, Woodhead Publishing Series in Metals and Surface Engineering, Cambridge, UK: Woodhead, 2010, p. 58.

  5. Garbacz, H., Wiecinski, P., Ossowski, M., Ortore, G., et al., Surface engineering techniques used for improving the mechanical and tribological properties of the Ti6A14V alloy, Surf. Coat. Technol., 2008, vol. 202, p. 2453.

    Article  Google Scholar 

  6. Pobol, I.L., Oleshuk, I.G., Drobov, A.N., and Sun Fen, G., Investigation of formation of hardened layer on titanium alloys by the method of ion-plasma nitriding, Proceedings of the National Academy of Sciences of Belarus Physical-Technical Series, 2019, vol. 64, no. 1, p. 25.

    Article  Google Scholar 

  7. Fernandes, A.C., Vaz, F., Ariza, E., Rocha, L.A., et al., Tribocorrosion behaviour of plasma nitrided and plasma nitrided + oxidised Ti6Al4V alloy, Surf. Coat. Technol., 2006, vol. 200, p. 6218.

    Article  Google Scholar 

  8. Grabarczyk, J., Batory, D., Kaczorowski, W., Pązik, B., et al., Comparison of different thermo-chemical treatments methods of Ti–6Al–4V alloy in terms of tribological and corrosion properties, Materials, 2020, vol. 13, no. 22, p. 5192.

    Article  Google Scholar 

  9. Martini, C. and Ceschini, L., Comparative study of the tribological behaviour of PVD coatings on the Ti–6Al–4V alloy, Tribol. Int., 2011, vol. 44, no. 3, p. 297.

    Article  Google Scholar 

  10. Nikolova, M., Yordanov, M., and Dermendzhiev, I., Mechanical properties of biocompatible (Ti, Al, V)N/TiOx coating for titanium implants, Indian J. Appl. Res., 2015, vol. 5, no. 4, p. 448.

    Google Scholar 

  11. Yankov, E., Nikolova, M.P., Dechev, D., Ivanov, N., et al., Changes in the mechanical properties of Ti samples with TiN and TiN/TiO2 coatings deposited by different PVD methods, IOP Conference Series: Materials Science and Engineering, 2018, vol. 416, no. 1, id. 012062.

  12. Gitlevich, A.E., Mikhailov, V.V., Parkanskii, N.Ya., and Revutzkii, V.M., Elektroiskrovoe legirovanie metallicheskih poverkhnostei (Electrospark Alloying of Metal Surfaces), Chisinau: Stiintsa, 1985.

  13. Johnson, R.N. and Sheldon, G.L., Advances in the electrospark deposition coating process, J. Vac. Sci. Technol. A, 1986, vol. 4, no. 6, p. 2740.

    Article  Google Scholar 

  14. Ivanov, V.I. and Burumkulov, F.K., Hardening of objects and the increase of their lifetime by the electrospark method: The object classification and the specific features of the technology, Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 5, p. 416.

    Article  Google Scholar 

  15. Mikhailov, V.V., Gitlevich, A.E., Verkhoturov, A.D., Mikhaylyuk, A.I., et al., Electrospark alloying of titanium and its alloys, physical and technological aspects and the possibility of practical use. Short review, Surf. Eng. Appl. Electrochem., 2013, vol. 49, no. 5, p. 21.

    Article  Google Scholar 

  16. Antonov, B., Device for local electric-spark layering of metals and alloys by means of rotating electrode, US Patent 3832514, 1974.

  17. Antonov, B., Panayotov, St., and Lyutakov, O., Apparatus for the spark deposition of metals, US Patent 4226697, 1980.

  18. Kostadinov, G.D. and Radev, D.D., Mathematical modeling of roughness changing of hard metal coatings obtained by contactless electrical spark deposition, Surf. Eng. Appl. Electrochem., 2019, vol. 55, no. 5, p. 522.

    Article  Google Scholar 

  19. Penyashki, T.G., Radev, D.D., Kandeva, M.K., and Kostadinov, G., Structural and tribological properties of multicomponent coatings on 45 and 210Cr12 steels obtained by electrospark deposition with WC-B4C-TiB2–Ni–Cr–Co–B–Si electrodes, Surf. Eng. Appl. Electrochem., 2019, vol. 55 no. 6, p. 638.

    Article  Google Scholar 

  20. Ivanov, V.I. and Burumkulov, F.K., Electrospark alloying, Zh. Ritm Mashinostr., 2010, vol. 4, no. 52, p. 34.

    Google Scholar 

  21. Mikhailov, V.V., Bachu, K.A., Pasinkovsky, E.A., and Peretyatku, P.V., On the issue of electrospark alloying of titanium and its alloys, Surf. Eng. Appl. Electrochem., 2006, vol. 42, no. 3, p. 106.

    Google Scholar 

  22. Wang, R.J., Qian, Y.Y., and Liu, J., Structural and interfacial analysis of WC92–Co8 coating deposited on titanium alloy by electrospark deposition, Appl. Surf. Sci., 2004, vol. 228, p. 405.

    Article  Google Scholar 

  23. Levashov, E.A., Zamulaeva, E.I., Kudryashov, A.E., Vakaev, P.V., et al., Materials science and technological aspects of electrospark deposition of nanostructured WC–Co coatings onto titanium substrates, Plasma Process. Polym., 2007, vol. 4, no. 3, p. 293.

    Article  Google Scholar 

  24. Luo, Y., Yang, L., Tian, M., Ge, Sh., et al., The friction and wear behavior of WC coating on medical grade titanium alloys, Proc. IMechE, Part J: J. Eng. Tribol., 2013, vol. 227, no. 8, p. 845.

    Article  Google Scholar 

  25. He, P., Qian, Y., Chang, Z.L., and Wang, R.J., Adhesion behavior of WC coating deposited on titanium alloy by electrospark deposition, Solid State Phenom., 2007, vol. 127, p. 325.

    Article  Google Scholar 

  26. Jaber, S., Arab, R., and Aghajani, H., Wear behavior of pure titanium coated with WC–Co by the use of electrospark deposition method, J. Tribol., 2019, vol. 141, no. 5, id. 051605. https://doi.org/10.1115/1.4043065

  27. Kudryashov, A.E., Eremeeva, Zh.V., Levashov, E.A., Lopatin, V.Yu., et al., On application of carbon-containing electrode materials in technology of electrospark alloying: Part 1. Peculiarities of coating formation using electrospark treatment of titanium alloy OT4-1, Surf. Eng. Appl. Electrochem., 2018, vol. 54, no. 5, p. 437.

    Article  Google Scholar 

  28. Smolina, I., Structure and phase structure of electro-spark Zr coatings on titanium alloys, Chall. Mod. Technol., 2012, vol. 3, no. 2, p. 12.

    Google Scholar 

  29. Hong, X., Tan, Y., Zhou, C., Xu, T., et al., Microstructure and tribological properties of Zr-based amorphous-nanocrystalline coatings deposited on the surface of titanium alloys by electrospark deposition, Appl. Surf. Sci., 2015, vol. 356, p. 1244.

    Article  Google Scholar 

  30. Hong, X., Tan, Y., Wang, X., Xu, T., et al., Microstructure and wear resistant performance of TiN/Zr-base amorphous-nanocrystalline composite coatings on titanium alloy by electrospark deposition, Surf. Coat. Technol., 2016, vol. 305, p. 67.

    Article  Google Scholar 

  31. Panashenko, V.M., Composition, structure and properties of electrospark and laser-electrospark ZrB2-containing coatings on titanium alloys, Electrical Contacts and Electrodes. Ser.: Composite, Layered and Gradient Materials and Coatings, 2014, p. 134.

    Google Scholar 

  32. Podchernyaeva, A., Verkhoturov, A.D., Panashenko, V.M., and Konevtsov, A., Electric spark surface hardening and integrated surface hardening of titanium, Eng. Nat. Sci., 2014, no. 1, p. 73.

  33. Kováčik, J., Baksa, P., and Emmer, Š., Electro spark deposition of TiB2 layers on Ti6Al4V alloy, Acta Metall. Slovaca, 2016, vol. 22, no. 1, p. 52.

    Article  Google Scholar 

  34. Paustovsky, A.V., Tkachenko, Yu.G., Alfintseva, R.A., Kirilenko, S.N., et al., Optimization of the composition, structure and properties of electrode materials and electrospark coatings during the strengthening and restoration of metal surfaces, Surf. Eng. Appl. Electrochem., 2013, vol. 49, no. 1, p. 4.

    Article  Google Scholar 

  35. Tao, Y., Chunhui, Zh., Guiqiao, S., and Ping, Y., Research on depositing Ni45 alloy on titanium alloy surface by electrospark deposition, China Foundry, 2008, vol. 5, no. 4, p. 244.

    Google Scholar 

  36. Mulin, Yu.I., Verkhoturov, A.D., and Vlasenko, V.D., Electrospark alloying of surfaces of titanium alloys, Perspekt. Mater., 2006, no. 1, p. 79.

  37. Sheldon, G., L, Characteristics of Ni–Ti surface alloys formed by electrospark deposition, Surf. Coat. Technol., 1988, vol. 36, p. 445.

    Article  Google Scholar 

  38. Wang, X.-R., Wang, Z.-Q., Lin, T.-S., and He, P., Mass transfer trends of AlCoCrFeNi high-entropy alloy coatings on TC11 substrate via electrospark—computer numerical control deposition. J. Mater. Process. Technol., 2017, vol. 241, p. 93. https://doi.org/10.1016/j.jmatprotec.2016.09.012

    Article  Google Scholar 

  39. Gadalov, V.N., Safonov, S.V., and Romanenko, E.F., Increase of wear resistance of the powder titanium alloy TYU7M2F2TS2 by electrospark alloying with PG410N401 alloy, Uprochnyayushchie Tekhnol. Pokrytiia, 2013, no. 12, p. 20.

  40. Li, Zh., Gao, W., Yoshihara, M., and He, Y., Improving oxidation resistance of Ti3Al and TiAl intermetallic compounds with electro-spark deposit coatings, Mater. Sci. Eng. A, 2003, vol. 347, p. 243.

    Article  Google Scholar 

  41. Wang, W. and Han, Ch., Microstructure and wear resistance of Ti6Al4V coating fabricated by electro-spark deposition, Metals, 2019, vol. 9, no. 1, p. 23.

    Article  Google Scholar 

  42. Bin, T.C., Xin, L.D., Zhan, W., and Yang, G., Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications, Appl. Surf. Sci., 2011, vol. 257, p. 6364.

    Article  Google Scholar 

  43. Zhevtun, I.G., Gordienko, P.S., and Kuryavyi, V.G., Influence of ArcDischarge time on microstructure of the Ti–TiC composite, Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 6, p. 491.

    Article  Google Scholar 

  44. Niu, J., Lun Wei Zhang, Zhang, Q.-Z., Wang, D.-X., et al., Microstructure of TiC coating deposited by electric-spark process on BT20 titanium alloy, Heat Treat. Met., 2006, vol. 31, no. 4, p. 59.

    Google Scholar 

  45. Zamulaeva, E.I., Levashov, E.A., Sviridova, T.A., Shvyndina, N.V., et al., Pulsed electrospark deposition of MAX phase Cr2AlC based coatings on titanium alloy, Surf. Coat. Technol., 2013, vol. 235, p. 454.

    Article  Google Scholar 

  46. Nikolenko, V., Verkhoturov, A.D., and Syui, N.A., Generation and study of new electrode materials with self-fluxing additives to improve the efficiency of mechanical electrospark alloying, Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 1, p. 38.

    Article  Google Scholar 

  47. Levashov, E.A., Vakaev, P.V., Zamulaeva, E.I., Kudryashov, A.E., et al., Nanoparticle dispersion-strengthened coatings and electrode materials for electrospark deposition, Thin Solid Films, 2006, vol. 515, no. 3, p. 1161.

    Article  Google Scholar 

  48. Levashov, E.A., Kudryashov, A.E., Pogozhev, Yu.S., Vakaev, P.V., et al., Specific features of formation of nanostructured electrospark protective coatings on the OT4-1 titanium alloy with the use of electrode materials of the TiC–Ti3AlC2 system disperse-strengthened by nanoparticles, Russ. J. Non-Ferr. Met., 2007, vol. 48, no. 5, p. 362.

    Article  Google Scholar 

Download references

Funding

The present work is based on the research funded by the Bulgarian National Science Fund of the Ministry of Education and Science under the project no. КP-06-Н37/19 “Technological Features and Regularities of Creation of New High Wear Resistant Composite Coatings on Titanium Alloys by Electrical Spark Deposition Process.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Penyashki.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penyashki, T.G., Kamburov, V.V., Kostadinov, G.D. et al. Possibilities and Prospects for Improving the Tribological Properties of Titanium and Its Alloys by Electrospark Deposition. Surf. Engin. Appl.Electrochem. 58, 135–146 (2022). https://doi.org/10.3103/S1068375522020090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522020090

Keywords:

Navigation