Skip to main content
Log in

Anticorrosion Properties of Indazole Derivative for Corrosion Inhibition of Carbon Steel in 1 M HCl

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The inhibitory effect of a new derivative of the indazole family, namely, (Z)-2-(1-methyl-5-nitro-1H-indazol-4-yl)-3-(3-nitrophenyl) acrylonitrile (51K2) against corrosion of carbon steel in 1 M HCl medium at a temperature of 25°C has been evaluated by different techniques such as gravimetric methods, potential-intensity curves, and electrochemical impedance spectroscopy. The impact of the concentration on the inhibition efficiency was also studied. The results of weight loss measurements and electrochemical analyses obtained showed that the addition of 51K2 increases the inhibition efficiency by decreasing the corrosion rate, with a maximum inhibitory efficacy of 80%. In other words, 51K2 is a good anodic-type corrosion inhibitor of carbon steel in 1 M HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Odewunmi, N.A., Umoren, S.A., and Gasem, Z.M., Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution, J. Environ. Chem. Eng., 2015, vol. 3, no. 1, p. 286.

    Article  Google Scholar 

  2. Sasikumar, Y., Adekunle, A., Olasunkanmi, L., Bahadur, I., et al., Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium, J. Mol. Liq., 2015, vol. 211, p. 105.

    Article  Google Scholar 

  3. Maayta, A.K., Bitar, M.B., and Al-Abdallah, M.M., Inhibition effect of some surface active agents on dissolution of copper in nitric acid, Br. Corros. J., 2001, vol. 36, no. 2, p. 133.

    Article  Google Scholar 

  4. Wang, Q., Ma, X., Shi, H., Yuan, S., et al., Inhibition performance of benzimidazole derivatives for steel 45(GB) in 1 mol/L HCl solution, J. Chin. Soc. Corros. Prot., 2015, vol. 35, no. 1, p. 49.

    Google Scholar 

  5. Qiu, L.-G., Xie, A.-J., and Shen, Y.-H., A novel triazole-based cationic gemini surfactant: Synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid, Mater. Chem. Phys., 2005, vol. 91, nos. 2–3, p. 269.

    Article  Google Scholar 

  6. Khadom, A.A., Yaro, A.S., AlTaie, A.S., and Kadum, A.A.H., Electrochemical, activations and adsorption studies for the corrosion inhibition of low carbon steel in acidic media, Port. Electrochim, Acta, 2009, vol. 27, no. 6, p. 699.

    Article  Google Scholar 

  7. Musa, A.Y., Kadhum, A.A.H., Mohamad, A.B., Takriff, M.S., et al., On the inhibition of mild steel corrosion by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol, Corros. Sci., 2010, vol. 52, no. 2, p. 526.

    Article  Google Scholar 

  8. Khadom, A.A., Musa, A.Y., Kadhum, A.A.H., Mohamad, A.B., et al., Adsorption kinetics of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol on mild steel surface, Port. Electrochim, Acta, 2010, vol. 28, no. 4, p. 221.

    Article  Google Scholar 

  9. Yadav, D.K. and Quraishi, M.A., Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution, Ind. Eng. Chem. Res., 2012, vol. 51, no. 24, p. 8194.

    Article  Google Scholar 

  10. Benali, O., Larabi, L., Merah, S., and Harek, Y., Influence of the Methylene Blue Dye (MBD) on the corrosion inhibition of mild steel in 0.5 M sulphuric acid, Part I: Weight loss and electrochemical studies, J. Mater. Environ. Sci., 2011, vol. 2, no. 1, p. 39.

    Google Scholar 

  11. Touhami, F., Aouniti, A., Abed, Y., Hammouti, B., et al., Corrosion inhibition of armco iron in 1 M HCl media by new bipyrazolic derivatives, Corros. Sci., 2000, vol. 42, no. 6, p. 929.

    Article  Google Scholar 

  12. Sabirneeza, A.A.F. and Subhashini, S., Poly(vinyl alcohol-proline) as corrosion inhibitor for mild steel in 1 M hydrochloric acid, Int. J. Ind. Chem., 2014, vol. 5, no. 3, p. 111.

    Article  Google Scholar 

  13. Bouklah, M., Hammouti, B., Aouniti, A., and Benhadda, T., Thiophene derivatives as effective inhibitors for the corrosion of steel in 0.5 M H2SO4, Prog. Org. Coat., 2004, vol. 49, no. 3, p. 225.

    Article  Google Scholar 

  14. Labjar, N., Lebrini, M., Bentiss, F., Chihib, N.-E., et al., Corrosion inhibition of carbon steel and antibacterial properties of aminotris-(methylenephosphonic) acid, Mater. Chem. Phys., 2010, vol. 119, nos. 1–2, p. 330.

    Article  Google Scholar 

  15. Bouklah, M., Hammouti, B., Lagrenee, M., and Bentiss, F., Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium, Corros. Sci., 2006, vol. 48, no. 9, p. 2831.

    Article  Google Scholar 

  16. Amar, H., Benzakour, J., Derja, A., Villemin, D., et al., Piperidin-1-yl-phosphonic acid and (4-phosphono-piperazin-1-yl) phosphonic acid: A new class of iron corrosion inhibitors in sodium chloride 3% media, Appl. Surf. Sci., 2006, vol. 252, no. 18, p. 6162.

    Article  Google Scholar 

  17. Chafki, L., Rifi, E.H., Touir, R., Touhami, M.E., et al., Corrosion inhibition of mild steel in 1.0 M HCl solution by anhydrous tricalcium phosphate, Open Mater. Sci. J., 2018, vol. 12, no. 1, p. 68.

    Article  Google Scholar 

  18. Ali, S.A., Saeed, M.T., and Rahman, S.U., The isoxazolidines: A new class of corrosion inhibitors of mild steel in acidic medium, Corros. Sci., 2003, vol. 45, no. 2, p. 253.

    Article  Google Scholar 

  19. Forsal, I., Lakhrissi, L., Naji, K., Abirou, S., et al., The efficiency of corrosion inhibitor as given by electro-chemical impedance spectroscopy Tafel polarization and weight-loss measurements, Spectrosc. Lett., 2010, vol. 43, no. 2, p. 136.

    Article  Google Scholar 

  20. Hajjaji, F.E., Belghiti, M.E., Hammouti, B., Jodeh, S., et al., Adsorption and corrosion inhibition effect of 2‑mercaptobenzimidazole (surfactant) on a carbon steel surface in an acidic medium: Experimental and Monte Carlo simulations, Port. Electrochimica. Acta, 2018, vol. 36, no. 3, p. 197.

    Article  Google Scholar 

  21. Salah, M., Lahcene, L., Omar, A., and Yahia, H., Study of corrosion inhibition of C38 steel in 1 M HCl solution by polyethyleneiminemethylene phosphonic acid, Int. J. Ind. Chem., 2017, vol. 8, no. 3, p. 263.

    Article  Google Scholar 

  22. Elkhotfi, Y., Forsal, I., and Rakib, E.M., Electrochemical behaviour of brass in NaCl 3% polluted by yeast: Effect of traizole derivative, Pharm. Chem., 2017, vol. 9, no. 1, p. 75.

    Google Scholar 

  23. Sudheer and Quraishi, M.A., 2-Amino-3,5-dicarbonitrile-6-thio-pyridines: New and effective corrosion inhibitors for mild steel in 1 M HCl, Ind. Eng. Chem. Res., 2014, vol. 53, no. 8, p. 2851.

    Article  Google Scholar 

  24. Musa, A.Y., Kadhum, A.A.H., Mohamad, A.B., and Takriff, M.S., Experimental and theoretical study on the inhibition performance of triazole compounds for mild steel corrosion, Corros. Sci., 2010, vol. 52, no. 10, p. 3331.

    Article  Google Scholar 

  25. Palomar-Pardavé, M., Romero-Romo, M., Herrera-Hernández, H., Abreu-Quijano, M.A., et al., Influence of the alkyl chain length of 2 amino 5 alkyl 1,3,4 thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions, Corros. Sci., 2012, vol. 54, p. 231.

    Article  Google Scholar 

  26. Popova, A., Christov, M., Raicheva, S., and Sokolova, E., Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion, Corros. Sci., 2004, vol. 46, no. 6, p. 1333.

    Article  Google Scholar 

  27. Obot, I.B., Obi-Egbedi, N.O., and Umoren, S.A., The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminum, Corros. Sci., 2009, vol. 51, no. 2, p. 276.

    Article  Google Scholar 

  28. Li, W., Zhao, X., Liu, F., and Hou, B., Investigation on inhibition behavior of S-triazole–triazole derivatives in acidic solution, Corros. Sci., 2008, vol. 50, no. 11, p. 3261.

    Article  Google Scholar 

  29. Herrag, L., Hammouti, B., Elkadiri, S., Aouniti, A., et al., Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations, Corros. Sci., 2010, vol. 52, no. 9, p. 3042.

    Article  Google Scholar 

  30. Raman, R.S. and Siew, W.H., Role of nitrite addition in chloride stress corrosion cracking of a super duplex stainless steel, Corros. Sci., 2010, vol. 52, no. 1, p. 113.

    Article  Google Scholar 

  31. Chetouani, A., Hammouti, B., Benhadda, T., and Daoudi, M., Inhibitive action of bipyrazolic type organic compounds towards corrosion of pure iron in acidic media, Appl. Surf. Sci., 2005, vol. 249, nos. 1–4, p. 375.

    Article  Google Scholar 

  32. ASTM G77-17, Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test, West Conshohocken, PA: ASTM Int., 2017.

  33. Eddahmi, M., Moura, N.M., Bouissane, L., Gamouh, A., et al., New nitroindazolylacetonitriles: Efficient synthetic access via vicarious nucleophilic substitution and tautomeric switching mediated by anions, New J. Chem., 2019, vol. 43, no. 36, p. 14355.

    Article  Google Scholar 

  34. Eddahmi, M., Moura, N.M., Bouissane, L., Faustino, M.A., et al., Synthesis and biological evaluation of new functionalized nitroindazolylacetonitrile derivatives, ChemistrySelect, 2019, vol. 4, no. 48, p. 14335.

    Article  Google Scholar 

  35. Elkhotfi, Y., Forsal, I., Rakib, E.M., and Mernari, B., Optimization of the inhibitor efficiency of a triazole on corrosion of mild steel in 1 M HCl, J. Adv. Electrochem., 2017, vol. 3, p. 141.

    Google Scholar 

  36. Elkhotfi, Y., Forsal, I., Rakib, E.M., and Mernari, B., The inhibition action of essential oil of Juniperus phoenicea on the corrosion of mild steel in acidic media, Port. Electrochim. Acta, 2018, vol. 36, no. 2, p. 77.

    Article  Google Scholar 

  37. Negm, N.A., Kandile, N.G., Badr, E.A., and Mohammed, M.A., Gravimetric and electrochemical evaluation of environmentally friendly nonionic corrosion inhibitors for carbon steel in 1 M HCl, Corros. Sci., 2012, vol. 65, p. 94.

    Article  Google Scholar 

  38. Lgaz, H., Masroor, S., Chafiq, M., Damej, M., et al., Evaluation of 2-mercaptobenzimidazole derivatives as corrosion inhibitors for mild steel in hydrochloric acid, Metals, 2020, vol. 10, p. 357.

    Article  Google Scholar 

  39. Fuchs-Godec, R., Effects of surfactants and their mixtures on inhibition of the corrosion process of ferritic stainless steel, Electrochim. Acta, 2009, vol. 54, no. 8, p. 2171.

    Article  Google Scholar 

  40. Negm, N.A., Kandile, N.G., Aiad, I.A., and Mohammad, M.A., New eco-friendly cationic surfactants: synthesis, characterization and applicability as corrosion inhibitors for carbon steel in 1 N HCl, Colloids Surf., A, 2011, vol. 391, nos. 1–3, p. 224.

    Article  Google Scholar 

  41. Aiad, I. and Negm, N.A., Some corrosion inhibitors based on Schiff base surfactants for mild steel equipments, J. Dispersion Sci. Technol., 2009, vol. 30, no. 8, p. 1142.

    Article  Google Scholar 

  42. Negm, N.A. and Zaki, M.F., Corrosion inhibition efficiency of nonionic Schiff base amphiphiles of p-aminobenzoic acid for aluminum in 4 N HCL, Colloids Surf., A, 2008, vol. 322, nos. 1–3, p. 97.

    Article  Google Scholar 

  43. Quraishi, M.A., Ahmad, S., and Ansari, M.Q., Inhibition of steel corrosion by some new triazole derivatives in boiling hydrochloric acid, Br. Corros. J., 1997, vol. 32, no. 4, p. 297.

    Article  Google Scholar 

  44. Poornima, T., Nayak, J., and Shetty, A.N., Effect of 4-(N,N-diethylamino)benzaldehyde thiosemicarbazone on the corrosion of aged 18 Ni 250 grade maraging steel in phosphoric acid solution, Corros. Sci., 2011, vol. 53, no. 11, p. 3688.

    Article  Google Scholar 

  45. Benabdellah, M., Touzani, R., Dafali, A., Hammouti, B., et al., Ruthenium-ligand complex, an efficient inhibitor of steel corrosion in H3PO4 media, Mater. Lett., 2007, vol. 61, nos. 4–5, p. 1197.

    Article  Google Scholar 

  46. Lebrini, M., Lagrenee, M., Vezin, H., Traisnel, M., et al., Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds, Corros. Sci., 2007, vol. 49, no. 5, p. 2254.

    Article  Google Scholar 

  47. Muthukrishnan, P., Prakash, P., Jeyaprabha, B., and Shankar, K., Stigmasterol extracted from Ficus hispida leaves as a green inhibitor for the mild steel corrosion in 1 M HCl solution, Arab. J. Chem., 2019, vol. 12, no. 8, p. 3345.

    Article  Google Scholar 

  48. Prabakaran, M., Kim, S.-H., Kalaiselvi, K., Hemapriya, V., et al., Highly efficient Ligularia fischeri green extract for the protection against corrosion of mild steel in acidic medium: electrochemical and spectroscopic investigations, J. Taiwan Inst. Chem. Eng., 2016, vol. 59, p. 553.

    Article  Google Scholar 

  49. Wang, S., Tao, Z., He, W., Xiao, D., et al., Effects of cyproconazole on copper corrosion as environmentally friendly corrosion inhibitor in nitric acid solution, Asian J. Chem., 2015, vol. 27, p. 1107.

    Article  Google Scholar 

  50. Lorenz, W.J. and Mansfeld, F., Determination of corrosion rates by electrochemical DC and AC methods, Corros. Sci., 1981, vol. 21, no. 9, p. 647.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanane Boubekraoui.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanane Boubekraoui, Forsal, I., Eddahmi, M. et al. Anticorrosion Properties of Indazole Derivative for Corrosion Inhibition of Carbon Steel in 1 M HCl. Surf. Engin. Appl.Electrochem. 57, 466–472 (2021). https://doi.org/10.3103/S1068375521040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521040049

Keywords:

Navigation