Skip to main content
Log in

Typical Cluster Sizes in Metal Electrodeposition

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Using the framework of the classical theory of nucleation, main cluster sizes occurring in the course of electrodeposition are determined. The problem is also considered from the standpoint of Cahn–Hillard theory. The focus is on the qualitative estimation of particle sizes in the course of nanonucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Weston, D.P., Gill, S.P.A., Fay, M., Harris, S.J., et al., Surf. Coat. Technol., 2013, vol. 236, pp. 75–83.

    Article  Google Scholar 

  2. Weston, D.P., Harris, S.J., Shipway, P.H., Weston, N.J., et al., Electrochim. Acta, 2013, vol. 55, pp. 5695–5708.

    Article  Google Scholar 

  3. Belevskii, S.S., Kosova, A.P., Yushchenko, S.P., Yahova, E.A., et al., Surf. Eng. Appl. Electrochem., 2011, vol. 47, no. 1, pp. 4–8.

    Article  Google Scholar 

  4. Belevsky, S.S., Cesiulis, H., Tsynysaru, N., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 6, pp. 42–52.

    Google Scholar 

  5. Dubrovskii, V.G., Nanoscience and Technology, Berlin: Springer-Verlag, 2014, pp. 1–73.

    Google Scholar 

  6. Milchev, A., Electrocrystallization: Fundamentals of Nucleation and Growth, Dordrecht: Kluwer, 2002.

    Google Scholar 

  7. Gamburg, Yu.D. and Zangari, J., Theory and Practice of Metal Electrodeposition, New York: Springer-Verlag, 2011.

    Book  Google Scholar 

  8. Gamburg, Yu.D., Russ. J. Electrochem., 2009, vol. 45, pp. 1397–1400.

    Article  Google Scholar 

  9. Gamburg, Yu.D., J. Solid State Electrochem., 2012, vol. 17, pp. 353–359.

    Article  Google Scholar 

  10. Gamburg, Yu.D., Russ. J. Electrochem., 2002, vol. 38, no. 10, pp. 1152–1153.

    Article  Google Scholar 

  11. The Collected Works of J. Willard Gibbs, Vol. 1: Thermodynamics, New York: Longmans, 1928.

  12. Ono, S. and Kondo, S., Molecular Theory of Surface Tension in Liquids, Berlin: Springer-Verlag, 1960.

    MATH  Google Scholar 

  13. Rowlinson, J.S. and Widom, B., Molecular Theory of Capillarity, Oxford: Clarendon, 1982.

    Google Scholar 

  14. Adamson, A.W., Physical Chemistry of Surfaces, New York: Wiley, 1967.

    Google Scholar 

  15. Adam, N.K., The Physics and Chemistry of Surfaces, Oxford: Clarendon, 1942.

    Google Scholar 

  16. Jaycock, M.J. and Parfitt, G.D., Chemistry of Interfaces, New York: Ellis Horwood, 1981.

    Google Scholar 

  17. Guggenheim, B.A., Thermodynamics, Amsterdam: North-Holland, 1967.

    MATH  Google Scholar 

  18. Rusanov, A.I., Phasengleichgewichte und Grenzflachenerscheinungen, Berlin: Academic-Verlag, 1978.

    Google Scholar 

  19. Dadashev, R.Kh., Termodinamika poverkhnostnykh yavlenii (Thermodynamics of Surface Phenomena), Moscow: Fizmatlit, 2008.

  20. Roldugin, V.I., Fizikokhimiya poverkhnosti (Physical Chemistry of a Surface), Dolgoprudnyi: Intellekt, 2008.

  21. Magomedov, M.N., Izuchenie mezhatomnogo vzaimodeistviya, obrazovaniya vakansii i samodiffuzii v kristallakh (Interatomic Interaction, Vacancy Formation, and Self-Diffusion in Crystals), Moscow: Fizmatlit, 2010.

  22. Rekhviashvili, S.Sh., Razmernye yavleniya v fizike kondensirovannogo sostoyaniaya i nanotekhnologiyakh (Dimensional Phenomena in Physics of Condensed State in Nanotechnologies), Nalchik: Kabardino-Balkar. Nauchn. Tsentr, Ross. Akad. Nauk, 2014.

  23. Khachaturyan, A.G., Theory of Structural Transformations in Solids, New York: Wiley, 1983.

    Google Scholar 

  24. Delahay, P., Double Layer and Electrode Kinetics, New York: Wiley, 1965.

    Google Scholar 

  25. Hill, T.L., Thermodynamics of Small Systems, New York: W.A. Benjamin, 1963–1964, in 2 parts.

  26. Huang, K., Statistical Mechanics, New York: Wiley, 1987.

    MATH  Google Scholar 

  27. Abraham, F.F., Homogeneous Nucleation Theory: The Pretransition Theory of Vapor Condensation, New York: Academic, 1974.

    Google Scholar 

  28. Prigogine, I. and Dufay, R., Chemical Thermodynamics (Treatise on Thermodynamics), London: Longmans, 1954.

    Google Scholar 

  29. Kashchiev, D., Nucleation: Basic Theory with Applications, Oxford: Butterworth-Heinemann, 2000.

    Google Scholar 

  30. Ma, S.-K., Modern Theory of Critical Phenomena, Benjamin, W.A., Ed., New York: Routledge, 1976.

    Google Scholar 

  31. Tolman, R.C., J. Chem. Phys., 1949, vol. 17, no. 3, pp. 333–337.

    Article  Google Scholar 

  32. Koenig, F.O., J. Chem. Phys., 1950, vol. 18, pp. 449–459.

    Article  Google Scholar 

  33. Buff, F.P. and Kirkwood, J.G., J. Chem. Phys., 1950, vol. 18, pp. 991–1001.

    Article  Google Scholar 

  34. Buff, F.P., J. Chem. Phys., 1951, vol. 19, pp. 1591–1596.

    Article  Google Scholar 

  35. Buff, F.P., J. Chem. Phys., 1955, vol. 23, pp. 419–423.

    Article  Google Scholar 

  36. Rekhviashvili, S.S., Kishtikova, E.V., and Rozenberg, B.A., Tech. Phys., 2009, vol. 79, no. 12, pp. 10–13.

    Google Scholar 

  37. Rekhviashvili, S.S. and Kishtikova, E.V., Tech. Phys., 2011, vol. 81, no. 1, pp. 148–152.

    Google Scholar 

  38. Rekhviashvili, S.S. and Kishtikova, E.V., Tech. Phys. Lett., 2006, vol. 32, no. 10, pp. 50–55.

    Google Scholar 

  39. Rekhviashvili, S.S., Kishtikova, E.V., Karmokova, P.Yu., and Karmokov, A.M., Tech. Phys. Lett., 2007, vol. 33, no. 2, pp. 1–7.

    Article  Google Scholar 

  40. Umirzakov, I.H., Butlerov Commun., 2014, vol. 39, no. 9, pp. 125–140.

    Google Scholar 

  41. Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1958, vol. 28, no. 2, pp. 258–267.

    Article  Google Scholar 

  42. Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1959, vol. 30, no. 5, pp. 1121–1124.

    Article  Google Scholar 

  43. Cahn, J.W. and Hilliard, D.J.E. J. Chem. Phys., 1959, vol. 30, no. 5, pp. 688–699.

    Article  Google Scholar 

  44. Cahn, J.W., Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 166–170.

    Google Scholar 

  45. Cahn, J.W. and Larché, F.C., Acta Metall., 1982, vol. 30, pp. 51–56.

    Article  Google Scholar 

  46. Hillert M., Metall. Trans. A, 1975, vol. 6, no. 1, pp. 5–19.

    Article  Google Scholar 

  47. Allen, S.M. and Cahn, J.W., Acta Metall., 1979, vol. 27, pp. 1085–1095.

    Article  Google Scholar 

  48. Baranov S.A., Handbook of Nanoelectrochemistry, Glanz: Springer-Verlag, 2015, pp. 1057–1069.

  49. Hadjiagapiou, I.A., Condens. Matter, 1994, vol. 6, pp. 5303–5322.

    Article  Google Scholar 

  50. Hadjiagapiou, I.A., Condens. Matter, 1995, vol. 7, pp. 547–562.

    Article  Google Scholar 

  51. Baranov, S.A., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 2, pp. 124–136.

    Article  Google Scholar 

  52. Tarazona, P., Cuesta, J.A., and Martınez-Raton, Y., Lect. Notes Phys., 2008, vol. 753, pp. 247–341.

  53. Anero, J.G., Espanol, P., and Tarazona, P., J. Chem. Phys., 2013, vol. 139, pp. 1–14.

    Article  Google Scholar 

  54. Samsonov, V.M., Bazulev, A.N., and Sdobnyakov, N.Yu., Cent. Eur. J. Phys., 2003, vol. 1, no. 3, pp. 474–480.

    Google Scholar 

  55. Sdobnyakov, N.Yu. and Samsonov, V.M., Cent. Eur. J. Phys., 2005, vol. 3, no. 2, pp. 247–257.

    Google Scholar 

  56. Samsonov, V.M. and Ratnikov, A.S., Colloids Surf., A, 2007, vol. 98, no. 2, pp. 52–57.

    Article  Google Scholar 

  57. Samsonov, V.M., Bazulev, A.N., and Shcherbakov, L.M., Rasplavy, 2002, no. 2, pp. 62–69.

  58. Bazulev, A.N., Samsonov, V.M., and Sdobnyakov, N.Yu., Russ. J. Phys. Chem., 2002, vol. 76, no. 1, pp. 1872–1877.

    Google Scholar 

  59. Bykov, T.V. and Zeng, X.C., J. Chem. Phys., 1999, vol. 111, no. 23, pp. 10602–10612.

    Article  Google Scholar 

  60. Bykov, T.V. and Zeng, X.C., J. Chem. Phys., 1999, vol. 111, no. 8, pp. 3705–3713.

    Article  Google Scholar 

  61. Bykov, T.V. and Zeng, X.C., J. Chem. Phys., 2001, vol. 105, no. 47, pp. 11586–11594.

    Article  Google Scholar 

  62. Bykov, T.V. and Shchekin, A.K. Colloid J., 1999, vol. 61, no. 2, pp. 144–151.

    Google Scholar 

  63. Warshavsky, V.B., Bykov, T.Y., and Zeng, X.C., J. Chem. Phys., 2001, vol. 114, no. 1, pp. 504–512.

    Article  Google Scholar 

  64. Schmelzer, J.W.P., Baidakov, V.G., and Boltachev, G.Sh., J. Chem. Phys., 2003, vol. 119, pp. 6166–6183.

    Article  Google Scholar 

  65. Baidakov, V.G. and Boltachev, G.Sh., Phys. Rev. E, 1999, vol. 59, pp. 469–473.

    Article  Google Scholar 

  66. Baidakov, V.G. and Boltachev, G.Sh., Phys. Rev. E, 1997, vol. 59, no. 1, pp. 5648–5657.

    Google Scholar 

  67. Baidakov, V.G., Kaveri, A.M., and Boltachev, G.Sh., J. Chem. Phys., 2002, vol. 106, pp. 167–175.

    Article  Google Scholar 

  68. Baidakov, V.G., Protsenko, S.P., Chernykh, G.G., and Boltachev, G.Sh., Phys. Rev. E, 2002, vol. 65, art. ID 047601-1-16.

    Article  Google Scholar 

  69. Baidakov, V.G., Kaverin, A.M., and Boltachev, G.Sh., J. Chem. Phys., 1997, vol. 106, no. 13, pp. 5648–5657.

    Article  Google Scholar 

  70. Kidyarov, B.I. and Atuchin, V.V., Ferroelectrics, 2007, vol. 360, pp. 96–99.

    Article  Google Scholar 

  71. Kidyarov, B.I., Phys. Status Solidi, 2009, vol. 51, no. 7, pp. 1357–1360.

    Google Scholar 

  72. Tovbin, Yu.K., Zaitseva, E.S., and Rabinovich, A.B., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 1, pp. 150–161.

    Article  Google Scholar 

  73. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 1, pp. 1–18.

    Article  Google Scholar 

  74. Uvarov, N.F., Russ. Chem. Rev., 2007, vol. 76, no. 5, pp. 415–433.

    Article  Google Scholar 

  75. L’vov, P.E. and Svetukhin, V.V., Phys. Status Solidi, 2015, vol. 57, no. 6, pp. 1213–1222.

    Google Scholar 

  76. Svetukhin, V.V. and Sibatov, R.T., J. Exp. Theor. Phys., 2015, vol. 120, no. 4, pp. 678–686.

    Article  Google Scholar 

  77. Tikhonchev, M., Muralev, A., and Svetukhin, V., Fusion Sci. Technol., 2014, vol. 66, no. 1, pp. 91–99.

    Article  Google Scholar 

  78. Svetukhin, V. and Tikhonchev, M., Adv. Mater. Res., 2014, vol. 1042, pp. 52–57.

    Article  Google Scholar 

  79. Shebzukhova, M.A., Shebzukhov, Z.A., and Shebzukhov, A.A., Phys. Solid State, 2012, vol. 54, no. 1, pp. 185–193.

    Article  Google Scholar 

  80. Shebzukhova, M.A., Shebzukhov, Z.A., and Shebzukhov, A.A., Fiz. Tverd. Tela, 2012, vol. 54, no. 2, pp. 173–181.

    Google Scholar 

  81. Rusanov, A.I., Termodinamika poverkhnostnykh yavlenii (Thermodynamics of Surface Phenomena), Leningrad: Leningr. Gos. Univ., 1960.

  82. Rekhviashvili, S.S., Kishtikova, E.V., and Rozenberg, B.A., Russ. J. Phys. Chem. B, 2009, vol. 3, no. 6, pp. 1008–1014.

    Article  Google Scholar 

  83. Schmelzer, J.W.P., Röpke, G., and Priezzhev, V.B., Nucleation Theory and Applications, Dubna: Joint Inst. Nucl. Res., 1999.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.I. Dikusar for discussing a number of issues concerning electrochemistry.

Funding

This work was financially supported through project No. 15.817.02.05A “Physicochemical methods and engineering aspects for obtaining novel materials and surfaces for multiscale technologies” and through Shevchenko Transnistria State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. D. Gamburg or S. A. Baranov.

Additional information

Translated by O. Polyakov

Appendices

APPENDIX A

There are alternative approaches to the consideration of nucleation in the Gibbs model. So, in [8, 9] it has been found that in the course of a stochastic process of ion discharging on the electrode surface with the formation of adatoms, the steady-state rate J of cluster formation from g adatoms (g-cluster) can be expressed as:

$$J = {\text{const}} \times g!{{\left( {{{\theta }_{0}}} \right)}^{g}}\exp \left[ {\left( {g + a} \right){{zF\eta } \mathord{\left/ {\vphantom {{zF\eta } {RT}}} \right. \kern-0em} {RT}}} \right],$$
(A1)

where θ0 is the equilibrium level of surface filling with adatoms, whereas the remaining notations are standard. The derivation of this formula is based on finding the average number of pairs, triples, and so on, that is, the clusters consisting of g = 2, 3, etc. particles for a given level of filling θ, that depends both on the equilibrium value of θ0 and on the electrode potential. More precisely, it depends on overvoltage η and on the exchange current density J. J is defined as the total number of particles attached per unit time to all the n-clusters located on a unit surface.

After taking the logarithm, formula (A1) transforms to

$$\ln J = g\ln {{\theta }_{0}} + \ln \left( {g!} \right) + \left[ {{{\left( {g + \alpha } \right)zF\eta } \mathord{\left/ {\vphantom {{\left( {g + \alpha } \right)zF\eta } {RT}}} \right. \kern-0em} {RT}}} \right] + C,$$
(A2)

whence it follows that:

$$d\ln {J \mathord{\left/ {\vphantom {J {d\eta }}} \right. \kern-0em} {d\eta }} = \left( {g + \alpha } \right){{zF\eta } \mathord{\left/ {\vphantom {{zF\eta } {RT}}} \right. \kern-0em} {RT}},$$
(A3)

which completely coincides with the expression that has been derived based on absolutely different considerations within another concept, namely within the atomistic theory of nucleation [6].

It is interesting that the existence of a critical value of g, according to equations (A2)(A3), is caused not by energy, as is the case of the classical interpretation, but by another reason. In order for this to become obvious, let us differentiate expression (A2) with respect to g under constant overvoltage. Such differentiation, if one uses the fact that d ln(g!)/dg ≈ ln g, the following relationship:

$${{d\ln J} \mathord{\left/ {\vphantom {{d\ln J} {dg}}} \right. \kern-0em} {dg}} = \ln {{{\theta }}_{0}} + \ln g + {{zF{\eta }} \mathord{\left/ {\vphantom {{zF{\eta }} {RT}}} \right. \kern-0em} {RT}},$$
(A4)

and since θ0 ⪡ 1, that is, lnθ0 ⪡ 0, then for some g this derivative passes through zero:

$$\ln g + {{zF{\eta }} \mathord{\left/ {\vphantom {{zF{\eta }} {RT}}} \right. \kern-0em} {RT}} + \ln {{{\theta }}_{0}} = 0,$$

or

$$g = \left( {{1 \mathord{\left/ {\vphantom {1 {{{{\theta }}_{0}}}}} \right. \kern-0em} {{{{\theta }}_{0}}}}} \right)\exp \left( {{{ - zF{\eta }} \mathord{\left/ {\vphantom {{ - zF{\eta }} {RT}}} \right. \kern-0em} {RT}}} \right).$$
(A5)

For a given g, the value of flux J passes through a minimum. Therefore, it is just the transition from the g*-cluster to the (g* + 1)-cluster that is determining, that is, it determines the rate of the entire further growth process (that in the steady-state mode is equal to the rate of this transition). This actually coincides with the definition of a critical nucleus: it is just the size from which a stable growth mode starts.

Comparison of (A5) and (9) shows that the equilibrium filling of the surface with adatoms, θ0, is very small and lower than 10–5, which corresponds to 1014 adatoms per square meter. Unfortunately, reliable experimental data concerning the level of equilibrium filling are absent in the literature.

APPENDIX B

As it has been already noted, an interesting fact consists in the fact that in the theory of nonlinear equations, a pendulum model with one degree of freedom (MM1) is presented as an example of an integrable nonlinear equation. It has also been established that for our purposes, both linearized and nonlinear MM1 lead to the same physical results (as it is known, fundamental ones) [51], and this result is very important for the size of the nucleation nucleus, too. In this regard, it seems that some mathematical analysis of obtaining a solution of a nonlinear equation belonging to MM1 could be of interest.

Let us consider Eq. (26). This equation can be formally transformed into the following equation (the validity of this procedure has been shown earlier):

$${{d\theta \left( \rho \right)} \mathord{\left/ {\vphantom {{d\theta \left( \rho \right)} {\sin \left\{ {\theta \left( \rho \right)} \right\}}}} \right. \kern-0em} {\sin \left\{ {\theta \left( \rho \right)} \right\}}} = {{ \pm d\rho } \mathord{\left/ {\vphantom {{ \pm d\rho } {{{r}_{{{\text{cc}}}}}}}} \right. \kern-0em} {{{r}_{{{\text{cc}}}}}}}.$$
(B1)

Next, if a new variable is introduced

$$t = \tan \left\{ {{{\theta \left( \rho \right)} \mathord{\left/ {\vphantom {{\theta \left( \rho \right)} 2}} \right. \kern-0em} 2}} \right\},$$
(B2)

then nonlinear equation (B1) by means of this substitution can be transformed into a linear one:

$${{dt} \mathord{\left/ {\vphantom {{dt} t}} \right. \kern-0em} t} = {{ \pm d\rho } \mathord{\left/ {\vphantom {{ \pm d\rho } {{{r}_{{{\text{cc}}}}}}}} \right. \kern-0em} {{{r}_{{{\text{cc}}}}}}},$$
(B3)

that can be readily integrated

$${\rho \mathord{\left/ {\vphantom {\rho {{{r}_{{{\text{cc}}}}}}}} \right. \kern-0em} {{{r}_{{{\text{cc}}}}}}} = \pm \ln t + {{{{\rho }_{0}}} \mathord{\left/ {\vphantom {{{{\rho }_{0}}} {{{r}_{{{\text{cc}}}}}}}} \right. \kern-0em} {{{r}_{{{\text{cc}}}}}}}$$
(B4)

0/rcc is chosen as the integration constant).

If one returns to the previous variable, one can obtain the following formula in the form of (29):

$$\theta \left( \rho \right) = 2\arctan \left\{ {\exp \left[ {{{ \pm \left( {\rho - {{\rho }_{0}}} \right)} \mathord{\left/ {\vphantom {{ \pm \left( {\rho - {{\rho }_{0}}} \right)} {{{r}_{{{\text{cc}}}}}}}} \right. \kern-0em} {{{r}_{{{\text{cc}}}}}}}} \right]} \right\}.$$
(B5)

The presented study, in our opinion, shows a mathematical relationship between linear and nonlinear models, which can be formulated as follows. If a coordinate transformation exists that transforms a non-linear equation into a linear one, then a nonlinear model is equivalent to a linear model.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamburg, Y.D., Baranov, S.A. Typical Cluster Sizes in Metal Electrodeposition. Surf. Engin. Appl.Electrochem. 56, 147–158 (2020). https://doi.org/10.3103/S1068375520020076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520020076

Keywords:

Navigation