Skip to main content
Log in

Platinum and Transparent Conducting Oxide Free Graphene-CNT Composite Based Counter-Electrodes for Dye-Sensitized Solar Cells

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene nano-sheets were prepared from natural graphite by a simple high shear exfoliation technique in suspension form and in bulk quantity. The structural properties of the graphene thus prepared were characterised by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and dynamic light scattering. BYK-multi-walled carbon nanotubes (MWCNT) paste was infused into the graphene solution. UV-Vis spectroscopy was performed to know the concentration of both graphene and CNT solution. Glass microslides were used to be coated with used to be coated with the graphene-MWCNT solution and surface morphology was studied by field emission scanning electron microscopy. The study of morphology showed that the CNT’s provide better connectivity across the graphene flakes. Sheet resistance was measured by the van der Pauw method. An optimum concentration for CNT was found out for lowest sheet resistance. 3-Aminopropyl triethoxysilane (APTES) was added into the graphene-CNT composite paste to achieve better adhesion. Cell assembling was done using TiO2 coated photo-anodes, tri-iodide/iodide electrolyte solution and the graphene-CNT-APTES based counter-electrodes. APTES improves the adhesion and was able to reduce the cell-cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hwang, S., Batmunkh, M., et al., Chem. Phys. Chem., 2015, vol. 16, pp. 53–65.

    Google Scholar 

  2. Hamann, T.W., Jensen, R.A., Martinson, A.B.F., van Ryswyk, H., et al., Energy Environ. Sci., 2008, vol. 1, pp. 66–78.

    Google Scholar 

  3. O’Regan, B. and Gratzel, M., Nature, 1991, vol. 353, pp. 737–740.

    Google Scholar 

  4. Hinsch, A., Veurman, W., Henning Brandt, H., Jensen, K.F., et al., Chem. Phys. Chem., 2014, vol. 15, pp. 1076–1087.

    Google Scholar 

  5. Gratzel, M., et al., Nature, 2001, vol. 414, pp. 338–344.

    Google Scholar 

  6. Gratzel, M., et al., Inorg. Chem., 2005, vol. 44, no. 20, pp. 6841–6851.

    Google Scholar 

  7. Olsen, E., Hagen, G., Lindquist, S., et al., Sol. Energy Mater. Sol. Cells, 2000, vol. 63, no. 3, pp. 267–273.

    Google Scholar 

  8. Velten, J., Mozer, A.J., Li, D., et al., Nanotechnology, 2012, vol. 23, p. 085201.

    Google Scholar 

  9. Pang, B., Dong, L., Ma, S., Dong, H., and Yu, L., et al., RSC Adv., 2016, vol. 6, p. 41 287.

    Google Scholar 

  10. Park, H., Chang, S., Zhou, X., et al., Nano Lett., 2014, vol. 14, no. 9, pp. 5148–5154.

    Google Scholar 

  11. Xu, X., Huang, D., Wang, M., et al., Sci. Rep., 2013, vol. 3, p. 1489.

    Google Scholar 

  12. Geim, A.K., et al., Science, 2009, vol. 324, no. 5934, pp. 1530–1534.

    Google Scholar 

  13. Campos-Delgado, J., Romo-Herrera, J.M., Jia, X., et al., Nano Lett., 2008, vol. 8, no. 9, pp. 2773–2778.

    Google Scholar 

  14. Scarpa, F., Adhikari, S., Srikantha Phani, A., et al., Nanotechnology, 2009, vol. 20, p. 065709.

    Google Scholar 

  15. Geim, A.K., Novoselov, K.S., et al., Nat. Mater., 2007, vol. 6, pp. 183–191.

    Google Scholar 

  16. Wu, J., Agrawal, M., Becerril, H.A., et al., ACS Nano, 2010, vol. 4, no. 1, pp. 43–48.

    Google Scholar 

  17. Yung, K.C., Wu, W.M., Pierpoint, M.P., et al., Contemp. Phys., 2013, vol. 54, no. 5, pp. 233–251.

    Google Scholar 

  18. Shim, W., Kwon, Y., Jeon, S.-Y., et al., Sci. Rep., 2015, vol. 5, p. 16 568.

    Google Scholar 

  19. Paton, K.R., et al., Nat. Mater., 2014, vol. 13, pp. 624–630.

    Google Scholar 

  20. Kumar, A., Zhou, C., et al., ACS Nano, 2010, vol. 4, no. 1, pp. 11–14.

    Google Scholar 

  21. Karanveer, S.A., Sivasambu, B., Khanna, A.S., et al., Nanoscale, 2015, vol. 42, pp. 17 879–17 888.

    Google Scholar 

  22. Nemala, S.S., Kartikay, P., Mallick, S., et al., J. Coll. Interface Sci., 2017, vol. 499, pp. 9–16.

    Google Scholar 

  23. Wang, G., Yang, J., Park, J., et al., J. Phys. Chem. C, 2008, vol. 112, pp. 8192–8195.

    Google Scholar 

  24. Liu, N., Luo, F., Wu, H., et al., Adv. Funct. Mater., 2008, vol. 18, pp. 1518–1525.

    Google Scholar 

  25. Saranya, K., Sivasankar, N., Subramania, A., et al., RSC Adv., 2014, vol. 4, p. 36  226.

    Google Scholar 

  26. Gao, W., et al., Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications, New York: Springer-Verlag, 2015.

    Google Scholar 

  27. Beams, R., Cancado, L.G., Novotny, L., et al., J. Phys. Condens. Matter, 2015, vol. 27, p. 083 002.

    Google Scholar 

  28. Muzyka, R., Drewniak, S., Pustelny, T., et al., Materials (Basel), 2018, vol. 11, no. 7, p. 1050.

    Google Scholar 

  29. Li, Z.F., Luo, G.H., Zhou, W.P., et al., Nanotechnology, 2006, vol. 17, no. 15, pp. 3692–3698.

    Google Scholar 

  30. Dodoo-Arhin, D., Howe, R.C.T., Hu, G., et al., Carbon, 2016, vol. 105, pp. 33–41.

    Google Scholar 

  31. Devi, M., Sahu, S.R., Mukherjee, P., et al., RSC Adv., 2015, vol. 5, p. 62 284.

    Google Scholar 

  32. Nemala, S.S., Kartikay, P., Mallick, S., et al., ACS Appl. Energy Mater., 2018, vol. 1, pp. 2512–2519.

    Google Scholar 

  33. Li, X., Cai, W., Jung, I., et al., ECS Trans., 2009, vol. 19, no. 5, pp. 41–52.

    Google Scholar 

  34. Lotya, M., Rakovich, A., Donegan, J.F., et al., Nanotechnology, 2013, vol. 24, p. 265 703.

    Google Scholar 

  35. Roy-Mayhew, J.D., Bozym, D.J., Punckt, C., et al., ACS Nano, 2010, vol. 4, no. 10, pp. 6203–6211.

    Google Scholar 

  36. Wu, J., Lan, Z., Lin, J., et al., Chem. Rev., 2015, vol. 115, no. 5, pp. 2136–2173.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Metallurgical Engineering and Materials Science department at the Indian Institute of Technology, Bombay, India for providing the lab facilities required for this project, Department of Science and Technology, India, and the Sophisticated Analytical Instrument Facility at the Indian Institute of Technology, Bombay, India for characterization facilities.

Funding

The authors are grateful to the Solar Energy Research Institute for India and the United States and the National Centre for Photovoltaic Education and Research, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ratul Kumar Biswas, Siva Sankar Nemala or Sudhanshu Mallick.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratul Kumar Biswas, Nemala, S.S. & Mallick, S. Platinum and Transparent Conducting Oxide Free Graphene-CNT Composite Based Counter-Electrodes for Dye-Sensitized Solar Cells. Surf. Engin. Appl.Electrochem. 55, 472–480 (2019). https://doi.org/10.3103/S1068375519040021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375519040021

Keywords:

Navigation