Skip to main content
Log in

Role of thiosulfate in susceptibility of AISI 316L austenitic stainless steels to pitting corrosion in 3.5% sodium chloride solutions

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The susceptibility of AISI (American iron and steel institute) 316L austenitic stainless steel alloy to pitting corrosion was assessed in 3.5% chloride solutions containing various concentration of thiosulfate ions, a main sulfide oxidant product, spanning across values of 0.001, 0.005, 0.01, 0.05 and 0.1 M, at temperatures of 23, 50 and 80°C. The potentiodynamic scan results indicated that low thiosulfate concentrations promote the chloride attack and the aggressiveness of thiosulfate species depends on the chloride to thiosulfate ratio and the test temperature. Increasing temperature apparently promotes the ionic activity of Cl and S2O32– The thiosulfate to chloride ratio plays an essential role in pitting the intensity of the AISI 316L stainless steel alloy and was found to be dependent on the test temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silva, C., Farias, J., and de Sant’Ana, H., Mater. Des., 2009, vol. 30, pp. 1581–1587.

    Article  Google Scholar 

  2. Olsson, J., Desalination, 2005, vol. 183, pp. 217–225.

    Article  Google Scholar 

  3. Oldfield, J. and Todd, B., Desalination, 1999, vol. 124, pp. 75–84.

    Article  Google Scholar 

  4. Silva, C., de Miranda, H., de Sant’Ana, H., and Farias, J., Mater. Charact., 2009, vol. 60, pp. 346–352.

    Article  Google Scholar 

  5. Meng, G., Li, Y., Shao, Y., Zhang, T., Wang, Y., and Wang, F., J. Mater. Sci. Techol., 2014, vol. 30, pp. 253–258.

    Article  Google Scholar 

  6. Ezuber, H., Mater. Des., 2014, vol. 59, pp. 330–343.

    Article  Google Scholar 

  7. Newman, R.C., Bandy, R., and Roberge, R., Corrosion, 1983, vol. 39, pp. 386–390.

    Article  Google Scholar 

  8. Almorshad, A. and Jamal, D., J. Appl. Electrochem., 2004, vol. 34, pp. 67–70.

    Article  Google Scholar 

  9. Laycock, N., Corrosion, 1999, vol. 55, pp. 590–595.

    Article  Google Scholar 

  10. Newman, R.C., Wong, W.P., Ezuber, H.M., and Garner, A., Corrosion, 1989, vol. 45, pp. 282–287.

    Article  Google Scholar 

  11. Roberge, P., Wang, S., and Roberge, R., Corrosion, 1999, vol. 57, pp. 733–737.

    Google Scholar 

  12. Ezuber, H.M. and Newman, R.C., Proc. European Corrosion Congr. EUROCORR’97, September 22–25, 1997, Trondheim, 1997, vol. 1, pp. 401–407.

    Google Scholar 

  13. Newman, R.C., Corrosion, 1985, vol. 41, pp. 450–453.

    Article  Google Scholar 

  14. Garner, A., Corrosion, 1985, vol. 41, pp. 587–591.

    Article  Google Scholar 

  15. Betts, A.J. and Newman, R.C., Corros. Sci., 1985, vol. 25, pp. 1551–1555.

    Google Scholar 

  16. Albiache, A. and Marcus, P., Corros. Sci., 1992, vol. 33, pp. 261–269.

    Article  Google Scholar 

  17. Zhang, J. and Millero, F., Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 1705–1718.

    Article  Google Scholar 

  18. Newman, R.C., Wong, W.P., and Garner, A., Corrosion, 1986, vol. 42, pp. 489–491.

    Article  Google Scholar 

  19. Horowtiz, H.H., Corros. Sci., 1983, vol. 23, pp. 353–362.

    Article  Google Scholar 

  20. Ramana, K.V.S., Anita, T., Mandal, S., Kaliappan, S., Shaikh, H., Sivaprasad, P.V., Dayal, R.K., and Khatak, H.S., Mater. Des., 2009, vol. 30, pp. 3770–3775.

    Article  Google Scholar 

  21. Laycock, N. and Newman, R.C., Corros. Sci., 1998, vol. 40, pp. 887–902.

    Article  Google Scholar 

  22. Semino, C., Pedeferri, P., Burstein, G., and Hoar, T., Corros. Sci., 1970, vol. 19, pp. 1069–1078.

    Article  Google Scholar 

  23. Souza, E., Rossitti, S., and Rollo, J., Mater. Charact., 2010, vol. 61, pp. 240–244.

    Article  Google Scholar 

  24. Laitinen, T., Corros. Sci., 2000, vol. 42, pp. 421–441.

    Article  Google Scholar 

  25. Ezuber, H. and Newman, R.C., Proc. III Symp. on Critical Factors in Localized Corrosion, ECS Proceedings Series, Frankel, G. and Newman, R.C., Eds., Pennington, NJ: Electrochem. Soc., 1992, vol. 92/9, pp. 120–133.

    Google Scholar 

  26. Ezuber, H., Betts, A.J., and Newman, R.C., Mater. Sci. Forum, 1989, vols. 44–45, pp. 247–258.

    Article  Google Scholar 

  27. Marcus, P. and Protopopoff, E., Corros. Sci., 1997, vol. 39, pp. 1741–1752.

    Article  Google Scholar 

  28. Ezuber, H., J. ASTM Int., 2005, vol. 2. doi 10.1520/JAI12866

  29. Newman, R.C., Isaacs, H., and Alman, B., Corrosion, 1982, vol. 38, pp. 261–265.

    Article  Google Scholar 

  30. Park, J.O., Verhoff, M., and Alkire, A., Electrochim. Acta, 1997, vol. 42, pp. 3281–3291.

    Article  Google Scholar 

  31. Ezuber, H., J. ASTM Int., 2005, vol. 2, pp. 96–106.

    Google Scholar 

  32. Ezuber, H., J. ASTM Int., 2009, vol. 6. doi 10.1520/JAI101709

  33. Duret-Thual, C., Costa, D., Yang, W.P., and Marcus, P., Corros. Sci., 1997, vol. 39, pp. 913–933.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosni Ezuber.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezuber, H., Alshater, A. & Abulhasan, M. Role of thiosulfate in susceptibility of AISI 316L austenitic stainless steels to pitting corrosion in 3.5% sodium chloride solutions. Surf. Engin. Appl.Electrochem. 53, 493–500 (2017). https://doi.org/10.3103/S1068375517050052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375517050052

Keywords

Navigation