Skip to main content
Log in

Magnetotransport of Cu2ZnSnS4 single crystals in two regimes of variable–range hopping conduction

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The resistivity, ρ(T), and the magnetoresistance (MR) of Cu2ZnSnS4 (CZTS) single crystals are investigated at temperatures T = 2–300 K in pulsed magnetic fields of B up to 20 T. The Mott variable–range hopping (VRH) conductivity over localized states of the defect acceptor band is observed between T ~ 50–150 K. The Shklovskii–Efros (SE) VRH conduction over the states of the Coulomb gap is found below T ~ 3–4 K. The positive MR is observed at all temperatures and magnetic fields, its value decreasing with T. In the Mott VRH conduction region, MR follows the law ln ρ(B) ∝ B 2 up to the highest applied fields. The joint analysis of the resistivity and MR data in this region has yielded values of the localization radius as well as a set of important microscopic parameters, including the mobility threshold in the acceptor band, the values of the density of localized states near the Fermi level and the critical concentration of the metal–insulator transition. In the SE region, the MR law above is observed only in much smaller fields, transformed into those of lnρ(B) ∝ B 2/3 or ∝ B 3/4 when B increases. Such transformation, accompanied by a strong increase of the localization radius, give evidence for an important role of scattering and interference phenomena in the VRH conduction at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katagiri, H., Sasaguchi, N., Hando, S., Hoshino, S., et al., Sol. Energy Mater. Sol. Cells, 1997, vol. 49, p. 407.

    Article  Google Scholar 

  2. Siebentritt, S. and Schorr, S., Prog. Photovoltaics Res. Appl., 2012, vol. 20, p. 512.

    Article  Google Scholar 

  3. Polizzotti, A., Repins, I.L., Noufi, R., Weib, S.-H., and Mitzi, D.B., Energy Environ. Sci., 2013, vol. 6, p. 3171.

    Article  Google Scholar 

  4. Levcenko, S., Tezlevan, V.E., Arushanov, E., Schorr, S., and Unold, T., Phys. Rev. B, 2012, vol. 86, p. 045206. @

    Article  Google Scholar 

  5. Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., et al., Adv. Energy Mater., 2014, vol. 4, p. 1301465.

    Article  Google Scholar 

  6. Liu, M.-L., Huang, F.-Q., Chen, L.-D., and Chen, I.-W., Appl. Phys. Lett., 2009, vol. 94, p. 202103.

    Article  Google Scholar 

  7. Tsuji, I., Shimodaira, Y., Kato, H., Kobayashi, H., and Kudo, A., J. Mat. Chem., 2010, vol. 22, p. 1402.

    Article  Google Scholar 

  8. Ikeda, S., Nakamura, T., Harada, T., and Matsumura, M., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 13943.

    Article  Google Scholar 

  9. Yokoyama, D., Minegishi, T., Jimbo, K., Hisatomi, T., et al., Appl. Phys. Express., 2010, vol. 3, p. 101202.

    Article  Google Scholar 

  10. Schorr, S., Hoebler, H.-J., and Tovar, M., Eur. J. Mineral., 2007, vol. 19, p. 65.

    Article  Google Scholar 

  11. Persson, C., J. Appl. Phys., 2010, vol. 107, p. 053710.

    Article  Google Scholar 

  12. Schorr, S., Thin Solid Films, 2007, vol. 515, p. 5985.

    Article  Google Scholar 

  13. Paier, J., Asahi, R., Nagoya, A., and Kresse, G., Phys. Rev. B, 2009, vol. 79, p. 115126.

    Article  Google Scholar 

  14. Gunavan, O., Gokmen, T., Warren, C.W., Kohen, J.D., et al., Appl. Phys. Lett., 2012, vol. 100, p. 253905.

    Article  Google Scholar 

  15. Chen, S., Yang, J.-H., Gong, X.G., Walsh, A., and Wei, S.-H., Phys. Rev. B, 2010, vol. 81, p. 245204.

    Article  Google Scholar 

  16. Nagoya, A., Asahi, R., Wahl, R., and Kresse, G., Phys. Rev. B, 2010, vol. 81, 113202.

    Article  Google Scholar 

  17. Tanaka, K., Miyamoto, Y., Uchiki, H., Nakazawa, K., and Araki, H., Phys. Stat. Solidi A, 2006, vol. 203, p. 2891.

    Article  Google Scholar 

  18. Hönes, K., Zscherpel, E., Scragg, J., and Siebentritt, S., Phys. B (Amsterdam, Neth.), 2009, vol. 404, p. 4949.

    Article  Google Scholar 

  19. Leitao, J.P., Santos, N.M., Fernandes, P.A., Salome, P.M.P., et al., Phys. Rev. B, 2011, vol. 84, p. 024120.

    Article  Google Scholar 

  20. Miyamoto, Y., Tanaka, K., Oonuki, M., Moritake, N., et al., Jpn. J. Appl. Phys., 2008, vol. 47, p. 596.

    Article  Google Scholar 

  21. Kosyak, V., Karmarkar, M.A., and Scarpulla, M.A., Appl. Phys. Lett., 2012, vol. 100, p. 263903.

    Article  Google Scholar 

  22. Ansari, M.Z. and Khare, N., J. Appl. Phys., 2015, vol. 117, p. 025706.

    Article  Google Scholar 

  23. Majeed Khan, M.A., Kumar, S., Alhoshan, M., and Al Dwayyan, A.S., Opt. Laser Technol., 2013, vol. 49, p. 196.

    Article  Google Scholar 

  24. Gonzalez, J.C., Ribeiro, G.M., Viana, E.R., Fernandes, P.A., et al., J. Phys. D: Appl. Phys., 2013, vol. 46, p. 155107.

    Article  Google Scholar 

  25. Guc, M., Espíndola Rodríguez, M., Bruc, L.I., Lisunov, K.G., et al., Proc. 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, 2013, p. 2449.

    Google Scholar 

  26. Guc, M., Caballero, R., Lisunov, K.G., López, N., et al., J. Alloy Compd., 2014, vol. 596, 140.

    Article  Google Scholar 

  27. González, J.C., Fernandes, P.A., Ribeiro, G.M., Abelenda, A., et al., Sol. Energy Mater. Sol. Cells, 2014, vol. 123, p. 58.

    Article  Google Scholar 

  28. Dermenji, L., Guc, M., Bruc, L.I., Dittrich, Th., et al., Proc. 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, 2014, p. 1801.

    Google Scholar 

  29. Lisunov, K.G., Guk, M., Nateprov, A., Levcenko, S., et al., Sol. Energy Mater. Sol. Cells, 2013, vol. 112, p. 127.

    Article  Google Scholar 

  30. Nagaoka, A., Miyake, H., Taniyama, T., Kakimoto, K., et al., Appl. Phys. Lett., 2013, vol. 103, p. 112107.

    Article  Google Scholar 

  31. Nagaoka, A., Miyake, H., Taniyama, T., Kakimoto, K., et al., Appl. Phys. Lett., 2014, vol. 104, p. 152101.

    Article  Google Scholar 

  32. Mott, N.F. and Davies, E.A., Electron Processes in Non-Crystalline Materials, Oxford: Clarendon, 1979, pp. 1–363.

    Google Scholar 

  33. Mott, N.F., Metal–Insulator Transitions, London: Taylor and Francis, 1990, pp. 1–320.

    Google Scholar 

  34. Shklovskii, B.I. and Efros, A.L., Electronic Properties of Doped Semiconductors, Berlin: Springer, 1984, pp. 1–388.

    Book  Google Scholar 

  35. Arushanov, E.K., Kloc, Ch., and Bucher, E., Phys. Rev. B, 1994, vol. 50, p. 2653.

    Article  Google Scholar 

  36. Arushanov, E., Fess, K., Kaefer, W., Kloc, Ch., and Bucher, E., Phys. Rev. B, 1997, vol. 56, p. 1911.

    Article  Google Scholar 

  37. Arushanov, E., Lisunov, K., Kloc, Ch., Malang, U., et al., Phys. Rev. B, 1997, vol. 56, p. 1005.

    Article  Google Scholar 

  38. Lisunov, K.G., Arushanov, E., Thomas, G.A., Bucher, E., et al., J. Appl. Phys., 2000, vol. 88, p. 4128.

    Article  Google Scholar 

  39. Lisunov, K., Arushanov, E., Kloc, Ch., Malang, U., et al., Phys. Stat. Solidi B, 1996, vol. 195, p. 227.

    Article  Google Scholar 

  40. Shklovskii, B.I. and Spivak, B.Z., Scattering and Interference Effects in Variable Range Hopping Conduction, Pollak, M. and Shklovskii, B., Eds., Amsterdam: North-Holland, 1991, pp. 241–348.

    Google Scholar 

  41. Shklovskii, B.I., Sov. Phys. Semicond., 1983, vol. 17, p. 1311.

    Google Scholar 

  42. Sarachik, M.P., Transport Studies in Doped Semiconductor Near the Metal–Insulator Transition, Edwards, P.P. and Rao, C.N.R., Eds., London: Taylor and Francis, 1995, pp. 1–500.

    Google Scholar 

  43. Castner, T.G., Hopping Conduction in the Critical Regime Approaching the Metal–Insulator Transition, Pollak, M. and Shklovskii, B., Eds., Amsterdam: North-Holland, 1991, pp. 1–48.

    Google Scholar 

  44. Shklovskii, B.I. and Efros, A.L., J. Exp. Theor. Phys., 1983, vol. 57, p. 470.

    Google Scholar 

  45. Nguen, V.L., Spivak, B.Z., and Shklovskii, B.I., J. Exp. Theor. Phys., 1985, vol. 62, p. 1021.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hajdeu-Chicarosh.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guc, M., Lähderanta, E., Shakhov, M.A. et al. Magnetotransport of Cu2ZnSnS4 single crystals in two regimes of variable–range hopping conduction. Surf. Engin. Appl.Electrochem. 53, 186–195 (2017). https://doi.org/10.3103/S1068375517020053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375517020053

Keywords

Navigation