Skip to main content
Log in

Novel adhesion promotion of aluminium for aerospace environments

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study focuses on analysing the durability of adhesive bonds formed in samples of Aluminium 6063, Titanium Nitride deposited Al 6063 and Anodized Al 6063 using epoxy adhesive Weicon A. Two types of studies are performed, first, samples of Aluminium 6063, Titanium Nitride deposited Al 6063 and Anodized Al 6063, are bonded by an epoxy adhesive Weicon A. Second, the samples are bonded by the adhesive with reinforcement of Ca2SiO4 nanoparticles in different proportions. The samples are examined using the scanning electron microscopy to study the morphology of the coating. A lap shear test is performed to determine the strength of the adhesive after the specimens were subjected to harsh chemical environments. A thermogravimetric analysis is performed on the adhesive to understand the effect of nanoparticles in the thermal stability in the Weicon A. It is understood from the tests that the titanium nitride coated Al 6063 samples bonded with Weicon A exhibited greater bond strength and also retained the strength when exposed to harsh environments. The inclusion of calcium silicate nano-particles showcased a considerable reduction in the bond strength. The thermal stability of Weicon A seems to be unaffected by the inclusion of calcium silicate nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Starke, E.A., Jr. and Staley, J.T., Progr. Aerospace Sci., 1996, vol. 32, pp. 131–1172.

    Article  Google Scholar 

  2. Minford, J.D., Handbook of Aluminium Bonding Technology and Data, New York: CRC Press, 1993, 1st ed.

    Book  Google Scholar 

  3. Immarigeona, J.P., Holta, R.T., Koula, A.K., Zhaoa, L., et al. Mater. Charact., 1995, vol. 35, pp. 41–67.

    Article  Google Scholar 

  4. Higgins, A., Int. J. Adhes. Adhes., 2000, vol. 20, pp. 367–376.

    Article  Google Scholar 

  5. Suzhu, Y., Min Nah, T., and Gary, C., Mater. Des., 2010, vol. 31, pp. S126–S129.

  6. Molitor, P. and Young, T., Int. J. Adhes. Adhes., 2002, vol. 22, pp. 101–107.

    Article  Google Scholar 

  7. Silvia, G., Prolongo, G. R., and Uren, A., Int. J. Adhes. Adhes., 2006, vol. 26, pp. 125–132.

    Article  Google Scholar 

  8. Katnam, K.B., Comer, A.J., Stanley, W.F., Buggy, M., and Young, T.M., Int. J. Adhes. Adhes., 2012, vol. 37, pp. 3–10.

    Article  Google Scholar 

  9. Szymczyk, E. and Godzimirski, J., Acta Mech. Autom., 2012, vol. 6, pp. 74–81.

    Google Scholar 

  10. Bowditch, M.R. and Shaw, S.J., Adv. Perform. Mater., 1996, vol. 3, pp. 325–342.

    Article  Google Scholar 

  11. Liu, L. and Jiang, J., J. Mater. Process. Techol., 2009, vol. 209, pp. 2864–2870.

    Article  Google Scholar 

  12. Boeing-Puget sound’s environmentally complaint sol–gel surface treatments for metal bonding, in A&M Environal Technotes, 1999, vol. 4, no. 3, pp. 1–4.

  13. Deepa Prabhu and Padmalatha Rao, Arabian J. Chem., 2013, vol. 6, pp. 119–126.

    Google Scholar 

  14. Deepa Prabhu and Padmalatha, Int. J. Chem. Technol. Res., 2013, vol. 5, pp. 2690–2705.

    Google Scholar 

  15. Davies, P., Sohier, L., Cognard, J.-Y., Bourmaud, A., et al. Int. J. Adhes. Adhes., 2009, vol. 29, pp. 724–736.

    Article  Google Scholar 

  16. Oskouei, R.H. and Ibrahim, R.N., Mater. Des., 2012, vol. 39, pp. 294–302.

    Article  Google Scholar 

  17. Sancaktar, E. and Kuznicki, J., Int. J. Adhes. Adhes., 2011, vol. 31, pp. 286–300.

    Article  Google Scholar 

  18. Brunner, A.J., Necola, A., Rees, M., Gasser, Ph., et al., Eng. Fract. Mech., 2006, vol. 73, pp. 2336–2345.

    Article  Google Scholar 

  19. Gilbert, E.N., Hayes, B.S., and Seferis, J.S., Polym. Eng. Sci., 2003, vol. 43, pp. 1096–1104.

    Article  Google Scholar 

  20. Kinloch, A.J. and Lee, J.H., J. Adhes., 2003, vol. 79, pp. 867–873.

    Article  Google Scholar 

  21. Njuguna, J. and Pielichowski, K., Adv. Eng. Mater., 2003, vol. 5, pp. 769–778.

    Article  Google Scholar 

  22. Tsai, J.-L., Huang, B.-H., and Cheng, Y.-L., J. Compos. Mater., 2009, vol. 43, pp. 3107–3123.

    Article  Google Scholar 

  23. Stone, D.S., Yoder, K.B., and Sproul, W.S., J. Vac. Sci. Technol., 1991, vol. 9, pp. 2543–2547.

    Article  Google Scholar 

  24. Ovat, F.A., David, F.O. and Anyandi, A.J., J. Mater. Sci. Res., 2012, vol. 1, pp. 2342–2363.

    Google Scholar 

  25. Patama, V., Tatsuhiko, A., and Hideyuki, K., Mater. Trans., JIM, 2003, vol. 44, pp. 2695–2697.

    Article  Google Scholar 

  26. Kapczinskia Pereira, M., Gilb, C., Kinastc, E.J., and dos Santosc, C.A., Mater. Res., 2003, vol. 6, no. 2, pp. 265–271.

    Article  Google Scholar 

  27. Akhilesh Gaharwar, K., Rivera, C., Wu, C.-J., and Burke, C.K., Mater. Sci. Eng., 2013, vol. 33, p. 1800.

    Article  Google Scholar 

  28. Subramanian, A., Pratap, T., Kurup, D.A., Thangaraj, G., Bhowmik, S., Mukherjee, S., and Rane, R., Surf. Eng., 2016, vol. 32, no. 4, pp. 272–278.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bhowmik.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, H., Bhowmik, S., Ajeesh, G. et al. Novel adhesion promotion of aluminium for aerospace environments. Surf. Engin. Appl.Electrochem. 52, 515–519 (2016). https://doi.org/10.3103/S1068375516060132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375516060132

Keywords

Navigation