Skip to main content
Log in

Removal of enrofloxacin from aqueous solutions using illite and synthetic zeolite X

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Enrofloxacin uptake and removal from aqueous solutions using illite and synthetic zeolite X prepared from illite, were studied in batch experiments under varying pH, contact time, and initial enrofloxacin concentrations. The X-ray diffraction and Fourier transform infrared spectroscopy caracterization were used to analyse the enrofloxacin adsorption in order to elucidate the adsorption mechanisms. It was found that enrofloxacin could be efficiently removed at pH 7 and pH 8 for clay and zeolite X, respectively. In addition, the second order model of kinetics is more adopted for the two samples. The isotherms of adsorption of enrofloxacin by illite and zeolite X show that the latter has the twice higher adsorption capacity of the clay. Equilibrium data fit well with the Langmuir and Freundlich isotherms. Moreover, the cation exchange, the electrostatic interaction, the cation bridging and the formation of bidentate ligands were the possible mechanisms of the enrofloxacin retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golet, E.M., Alder, A.C., and Giger, W., Environ. Sci. Technol., 2002, vol. 36, pp. 3645–3651.

    Article  Google Scholar 

  2. Hooper, D.C. and Wolfson, J.S., Mechanisms of bacterial resistance to quinolones, in Quinolone Antimicrobial Agents, Hooper, D.C. and Wolfson, J.S., Eds., Washington, DC: Am. Soc. Microbiol., 1993, pp. 97–118.

  3. Sayah, R.S., Kaneene, J.B., Johnson, Y., and Miller, R., Appl. Environ. Microbiol., 2005, vol. 73, pp. 1394–1404.

    Article  Google Scholar 

  4. Al-Almad, A., Daschner, F.D., and Kummerer, K., Arch. Environ. Contam. Toxicol., 1999, vol. 37, pp. 158–163.

    Article  Google Scholar 

  5. Martinez, M., McDermott, P., and Walker, R., Vet. J., 2006, vol. 172, pp. 10–28.

    Article  Google Scholar 

  6. Mitchell, M.A., J. Exotic Pet Med., 2006, vol. 15, pp. 66–69.

    Article  Google Scholar 

  7. Seifrtova, M., Pena, A., Lino, C.M., and Solich, P., Anal. Bioanal. Chem., 2008, vol. 391, pp. 799–805.

    Article  Google Scholar 

  8. Focazio, M.J., Kolpin, D.W., Barnes, K.K., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Barber, L.B., and Thurman, M.E., Sci. Total Environ., 2008, vol. 402, pp. 201–216.

    Article  Google Scholar 

  9. Yiruhan Wang, Q.J., Mo, C.H., Li, Y.W., Gao, P., Tai, Y.P., Zhang, Y., Ruan, Z.L., and Xu, J.W., Environ. Pollut., 2010, vol. 158, pp. 2350–2358.

    Article  Google Scholar 

  10. Tong, C., Zhou, X., and Guo, Y., J. Agric. Food Chem., 2011, vol. 59, pp. 7303–7309.

    Article  Google Scholar 

  11. Trivedi, P. and Vasudevan, D., Environ. Sci. Technol., 2007, vol. 41, pp. 3153–3158.

    Article  Google Scholar 

  12. Yan, W., Hu, S., and Jing, C., J. Colloid Interface Sci., 2012, vol. 372, pp. 141–147.

    Article  Google Scholar 

  13. Zhou, C., Assem, M., Tay, J.C., Watkins, P.B., Blumberg, B., Schuetz, E.G., and Thummel, K.E., J. Clin. Invest., 2006, vol. 116, pp. 1703–1712.

    Article  Google Scholar 

  14. Guinea, E., Brillas, E., Centellas, F., Cañizares, P., Rodrigo, M.A., and Sáez, C., Water Res., 2009, vol. 43, pp. 2131–2138.

    Article  Google Scholar 

  15. Tong, D.S., Zhou, C.H., Lu, Y., Yu, H., Zhang, G.F., and Yu, W.H., Appl. Clay Sci., 2010, vol. 50, pp. 427–431.

    Article  Google Scholar 

  16. Rivagli, E., Pastorello, A., Sturini, M., Maraschi, F., Speltini, A., Zampori, L., Setti, M., Malavasi, L., and Profumo, A., J. Environ. Chem. Eng., 2014, vol. 2, pp. 738–744.

    Article  Google Scholar 

  17. Yan, W., Zhang, J., and Jing, C., J. Colloid Interface Sci., 2013, vol. 390, pp. 196–203.

    Article  Google Scholar 

  18. Wan, M., Li, Z., Hong, H., and Wu, Q., J. Asian Earth Sci., 2013, vol. 77, pp. 287–294.

    Article  Google Scholar 

  19. Ötker, H.M. and Akmehmet-Balcioglu, I., J. Hazard Mater., 2005, vol. 122, pp. 251–258.

    Article  Google Scholar 

  20. Ašperger, D., Varga, I., Babic, S., and Curkovic, L., Holistic Approach Environ., 2014, vol. 4, pp. 3–15.

    Google Scholar 

  21. Mezni, M., Hamzaoui, A., Hamdi, N., and Srasra, E., Appl. Clay Sci., 2011, vol. 52, pp. 209–218.

    Article  Google Scholar 

  22. Lizondo, M., Pons, M., Gallardo, M., and Estelrich, J., J. Pharm. Biomed., 1997, vol. 15, pp. 1845–1849.

    Article  Google Scholar 

  23. Jimenez-Lozano, E., Marques, I., Barron, D., Beltran, J.L., and Barbosa, J., Anal. Chim. Acta, 2002, vol. 464, pp. 37–45.

    Article  Google Scholar 

  24. Barbosa, J., Barron, D., Jimenez-Lozano, E., and Sanz-Nebot, V., Anal. Chim. Acta, 2001, vol. 437, 309–321.

  25. Escribano, E., Calena, A.C., Garrigues, T.M., Freixas, J., Domenech, J., and Moreno, J., Antimicrob. Agents Chem., 1997, vol. 41, pp. 1996–2000.

    Google Scholar 

  26. Bergaya, F. and Vayer, M., Appl. Clay Sci., 1997, vol. 12, pp. 275–280.

    Article  Google Scholar 

  27. Molina, A. and Poole, C., Miner. Eng., 2004, vol. 17, pp. 167–173.

    Article  Google Scholar 

  28. Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-García, M.A., and Moreno-Castilla, C., J. Chem. Technol. Biotechnol., 2001, vol. 76, pp. 1209–1215.

    Article  Google Scholar 

  29. Chang, P., Li, Z., Jean, J., Jiang, W., Wang, C., and Lin, K., Appl. Clay Sci., 2012, vols. 67–68, pp. 158–163.

    Google Scholar 

  30. Martinez, Y.N., Pinuel, L., Castro, G.R., and Breccia, J.D., Appl. Biochem. Biotechnol., 2012, vol. 167, pp. 1421–1429.

    Article  Google Scholar 

  31. Gu, C. and Karthikeyan, K.G., Environ. Sci. Technol., 2005, vol. 39, pp. 9166–9173.

    Article  Google Scholar 

  32. Goyner, K.W., Chorover, J., Kubicki, J.D., Zimmerman, A.R., and Brantley, S.L., J. Colloid Interface Sci., 2005, vol. 283, pp. 160–170.

    Article  Google Scholar 

  33. Nowara, A., Burhenne, J., and Spiteller, M., J. Agric. Food Chem., 1997, vol. 45, pp. 1459–1463.

    Article  Google Scholar 

  34. Turel, I. and Golobic, A., Anal. Sci., 2003, vol. 19, pp. 329–330.

    Article  Google Scholar 

  35. Al-Mustafa, J., Acta Chim. Slov., 2002, vol. 49, pp. 457–466.

    Google Scholar 

  36. Al-Mustafa, J. and Tashtoush, B., J. Coord. Chem., 2003, vol. 56, pp. 113–124.

    Article  Google Scholar 

  37. Wang, C.J., Li, Z., and Jiang, W.T., Appl. Clay Sci., 2011, vol. 53, pp. 723–728.

    Article  Google Scholar 

  38. Ho, Y.S., J. Hazard Mater. B, 2006, vol. 136, pp. 681–689.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mezni.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezni, M., Saied, T., Horri, N. et al. Removal of enrofloxacin from aqueous solutions using illite and synthetic zeolite X. Surf. Engin. Appl.Electrochem. 53, 89–97 (2017). https://doi.org/10.3103/S1068375516060107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375516060107

Keywords

Navigation