Skip to main content
Log in

Model-empirical Calculation of Methane and Carbon Dioxide Fluxes from Peatbog Soil

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

A new process-based model designed to develop a methodology for the inventory of greenhouse gas emissions from peatbog soils is presented. Within the framework of the general model, a new parameterized formula for calculating methane oxidation in the aerated soil layer and the vegetation layer is proposed. The proposed approach is defined as model-empirical, since the theoretical model relies on the use of values of model parameters determined by a specially developed experimental procedure. A detailed description of the model calibration by means of experimental studies of soil samples is given. Examples of the calculated dependences of methane and carbon dioxide flux densities on the peatbog water level are presented. A comparison with data on methane fluxes measured in boreal bogs demonstrated a satisfactory consistence of the calculated and measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. T. G. Abramova, M. S. Boch, and E. A. Galkina, Types of the USSR Bogs and Their Classification Principles (Nauka, Leningrad, 1974) [in Russian].

    Google Scholar 

  2. S. E. Vomperskii, "Role of Bogs in the Carbon Cycle," in 11th Readings in Memory of V.I. Sukachev, Biogeocenological Features of Bogs and Their Rational Use (Nauka, Moscow, 1994) [in Russian].

  3. A. D. Voronin, Fundamentals of Soil Physics (MGU, Moscow, 1986) [in Russian].

    Google Scholar 

  4. M. V. Glagolev, "Elements of Quantitative Theory of Processes of Methane Formation and Consumption in Soil," in Proceedings of the Conference "Bogs and Biosphere" (Tomsk, 2004) [in Russian].

  5. M. V. Glagolev, D. V. Il’yasov, A. F. Sabrekov, and I. E. Terent’eva, "WeMEM Model for Estimating Methane Emission from Bogs," in Proceedings of the 5th Conference "Mathematical Modeling in Biology" (Pushchino, 2017) [in Russian].

  6. M. V. Glagolev and A. V. Smagin, "Quantification of Methane Emission from Bogs: From the Soil Profile to a Region," Doklady po Ekologicheskomu Pochvovedeniyu, No. 3 (2006) [in Russian].

    Google Scholar 

  7. M. V. Glagolev and I. V. Filippov, "An Answer to A.V. Smagin: III. On Methanotrophic Filter and Convective Discharge to the Atmosphere," Dinamika Okruzhayushchei Sredy i Global’nye Izmeneniya Klimata, No. 1, 6 (2015) [in Russian].

    Article  Google Scholar 

  8. GOST 5180-2015. Soils. Methods for Laboratory Determination of Physical Characteristics (2019) [in Russian].

  9. GOST 11306-2013. Peat and Products of Its Processing. Method for Ash Content Determination (2014) [in Russian].

  10. I. V. Evdokimov and A. A. Larionova, "Ideas for the Discussion Proposed by A.V. Smagin," Dinamika Okruzhayushchei Sredy i Global’nye Izmeneniya Klimata, No. 1, 6 (2015) [in Russian].

  11. T. T. Efremova, A. F. Avrova, and S. P. Efremov, "Calculation Method for Determination of Carbon in Peat and Moss Litter of Forest Bogs by Ash Content of Plant Substrate," Sibirskii Lesnoi Zhurnal, No. 6 (2016) [in Russian].

  12. A. V. Zinchenko, "Model of Humification and Mineralization of Organic Matter in Soil and Its Application for Calculating Bog Ecosystem Carbon Balance Components," Dinamika Okruzhayushchei Sredy i Global’nye Izmeneniya Klimata, No. 2, 8 (2017) [in Russian].

  13. A. V. Zinchenko, "Parameterized Model for Calculating Carbon Dioxide Fluxes between Northwestern Europe Natural Ecosystems and the Atmosphere," Agrofizika, No. 1 (2015) [in Russian].

  14. I. D. Makhatkov and Yu. V. Ermolov, "Temperature Regime of Northern Taiga Raised Bog Active Layer," Mezhdunarodnyi Zhurnal Prikladnykh i Fundamental’nykh Issledovanii, No. 11–3 (2015) [in Russian].

  15. Ministry of Natural Resources and Ecology of the Russian Federation. Order No. 15-R of April 16, 2015 "On Approval of Methodological Recommendations for Voluntary Inventory of Greenhouse Gas Emissions in the Subjects of the Russian Federation" [in Russian].

  16. Guidelines on Hydrometeorological Stations, Issue 8: Hydrometeorological Observations on Bogs, 3rd ed. (Gidrometeoizdat, Leningrad, 1990).

  17. A. V. Penenko, Mathematic Modeling of Advection–Diffusion–Response Processes with Assimilation of Observational Data and Inverse Problem Solution, PhD Thesis (2021) [in Russian].

  18. V. I. Privalov, A. V. Zinchenko, and V. M. Ivakhov, "Laboratory Study of Methane Generation in Tundra Soil Samples from Permafrost Zone," Agrofizika, No. 4 (2015) [in Russian].

  19. A. A. Sirin, A. A. Maslov, N. A. Valyaeva, O. P. Tsyganova, and T. V. Glukhova, "Mapping of Peatbogs in the Moscow Region from High-resolution Satellite Data," Lesovedenie, No. 5 (2014) [in Russian].

  20. I. N. Skrynnikova, "Classification of Virgin Bog and Meliorated Peat Soils in the USSR," Pochvovedenie, No. 5 (1964) [in Russian].

  21. A. V. Smagin, "Debatable Issues of Quantification of Gas Fluxes between the Soil and Atmosphere (to the Discussion of M.V. Glagolev and A.V. Naumov)," Dinamika Okruzhayushchei Sredy i Global’nye Izmeneniya Klimata, No. 2, 5 (2014) [in Russian].

  22. A. V. Smagin, "Concluding Comments to Debatable Issues of Gas Exchange between Bogs and the Atmosphere," in Bogs and Biosphere (Naukoemkie Tekhnologii, Tver, 2018) [in Russian].

  23. V. M. Stepanenko, E. E. Machul’skaya, M. V. Glagolev, and V. N. Lykossov, "Numerical Modeling of Methane Emissions from Lakes in the Permafrost Zone," Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 2, 47 (2011)].

    Article  Google Scholar 

  24. E. Abakumov and V. Polyakov, "Carbon Polygons and Carbon Offsets: Current State, Key Challenges and Pedological Aspects," Agronomy, No. 10, 11 (2021).

    Article  Google Scholar 

  25. R. Amundson, "The Carbon Budget in Soils," Ann. Rev. Earth and Planetary Sciences, No. 1, 29 (2001).

    Article  Google Scholar 

  26. M. Aurela, T. Laurila, and J.-P. Tuovinen, "Annual CO2 Balance of a Subarctic Fen in Northern Europe: Importance of the Wintertime Efflux," J. Geophys. Res. Atmos., No. D21, 107 (2002).

    Article  Google Scholar 

  27. J. Bai, G. Zhang, Q. Zhao, Q. Lu, J. Jia, B. Cui, and X. Liu, "Depth-distribution Patterns and Control of Soil Organic Carbon in Coastal Salt Marshes with Different Plant Covers," Sci. Reports, No. 1, 6 (2016).

    Article  Google Scholar 

  28. K. A. Bona, C. Shaw, D. K. Thompson, O. Hararuk, K. Webster, G. Zhang, M. Voicu, and W. A. Kurz, "The Canadian Model for Peatlands (CaMP): A Peatland Carbon Model for National Greenhouse Gas Reporting," Ecol. Model., 431 (2020).

    Article  Google Scholar 

  29. W. Borren, W. Bleuten, and E. D. Lapshina, "Holocene Peat and Carbon Accumulation Rates in the Southern Taiga of Western Siberia," Quat. Res., No. 1, 61 (2004).

    Article  Google Scholar 

  30. S. N. Denisov, A. V. Eliseev, I. I. Mokhov, and M. M. Arzhanov, "Model Estimates of Global and Regional Atmospheric Methane Emissions of Wetland Ecosystems," Izv., Atmos. and Oceanic Phys., No. 5, 51 (2015).

    Article  Google Scholar 

  31. E. A. Dyukarev, A. A. Vyaizya, and M. V. Kiselev, "Differences in Temperature Regime of Mineral and Peat Soil in Bakchar District of Tomsk Region," Environ. Dynamics and Global Climate Change, No. 2, 10 (2019).

    Article  Google Scholar 

  32. IPCC. Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (IPCC, 2006), https://www.ipcc.ch/publication/2013-supplement-to-the-2006-ipcc-guidelines-for-national-greenhouse- gas-inventories-wetlands/ (Accessed June 8, 2022).

  33. J. Kim and S. B. Verma, "Soil Surface CO2 Flux in a Minnesota Peatland," Biogeochemistry, No. 1, 18 (1992).

    Article  Google Scholar 

  34. N. Kip, J. F. van Winden, Y. Pan, L. Bodrossy, G.-J. Reichart, A. J. P. Smolders, M. S. M. Jetten, J. S. S. Damste, and H. J. M. Op den Camp, "Global Prevalence of Methane Oxidation by Symbiotic Bacteria in Peat-moss Ecosystems," Nature Geosci., No. 9, 3 (2010).

    Article  Google Scholar 

  35. Y. Liu, Modeling the Emissions of Nitrous Oxide (N2O) and Methane (CH4) from the Terrestrial Biosphere to the Atmosphere, PhD Thesis (MIT Global Change, 1996).

  36. E. Repo, J. T. Huttunen, A. V. Naumov, A. V. Chichulin, E. D. Lapshina, W. Bleuten, and P. J. Martikainen, "Release of CO2 and CH4 from Small Wetland Lakes in Western Siberia," Tellus B: Chem. Phys. Meteorol., No. 5, 59 (2007).

    Article  Google Scholar 

  37. C. Schadel, Y. Luo, R. David Evans, S. Fei, and S. M. Schaeffer, "Separating Soil CO2 Efflux into C-pool-specific Decay Rates via Inverse Analysis of Soil Incubation Data," Oecologia, No. 3, 171 (2013).

    Article  Google Scholar 

  38. N. J. Shurpali, S. B. Verma, R. J. Clement, and D. P. Billesbach, "Seasonal Distribution of Methane Flux in a Minnesota Peatland Measured by Eddy Correlation," J. Geophys. Res. Atmos., No. D11, 98 (1993).

    Article  Google Scholar 

  39. C. A. Sierra and M. Muller, "A General Mathematical Framework for Representing Soil Organic Matter Dynamics," Ecol. Monographs, No. 4, 85 (2015).

    Article  Google Scholar 

  40. I. Sundh, C. Mikkela, M. Nilsson, and B. H. Svensson, "Potential Aerobic Methane Oxidation in a Sphagnum-dominated Peatland—Controlling Factors and Relation to Methane Emission," Soil Biol. Biochem., No. 6, 27 (1995).

    Article  Google Scholar 

  41. G. T. Swindles, P. J. Morris, D. J. Mullan, R. J. Payne, T. P. Roland, M. J. Amesbury, M. Lamentowicz, T. E. Turner, A. Gallego-Sala, T. Sim, I. D. Barr, M. Blaauw, A. Blundell, F. M. Chambers, D. J. Charman, A. Feurdean, J. M. Galloway, M. Galka, S. M. Green, K. Kajukalo, E. Karofeld, A. Korhola, L. Lamentowicz, P. Langdon, K. Marcisz, D. Mauquoy, Y. A. Mazei, M. M. McKeown, E. A. D. Mitchell, E. Novenko, G. Plunkett, H. M. Roe, K. Schoning, U. Sillasoo, A. N. Tsyganov, M. van der Linden, M. Valiranta, and B. Warner, "Widespread Drying of European Peatlands in Recent Centuries," Nature Geosci., No. 11, 12 (2019).

    Article  Google Scholar 

  42. J. Tollefson, "Scientists Raise Alarm over ‘Dangerously Fast’ Growth in Atmospheric Methane," Nature, https://www.nature.com/articles/d41586-022-00312-2 (Accessed July 18, 2022).

  43. B. P. Walter and M. A. Heimann, "Process-based, Climate-sensitive Model to Derive Methane Emissions from Natural Wetlands: Application to Five Wetland Sites, Sensitivity to Model Parameters, and Climate," Global Biogeochem. Cycles, No. 3, 14 (2000).

    Article  Google Scholar 

  44. X. Xu, F. Yuan, P. J. Hanson, S. D. Wullschleger, P. E. Thornton, W. J. Riley, X. Song, D. E. Graham, C. Song, and H. Tian, "Reviews and Syntheses: Four Decades of Modeling Methane Cycling in Terrestrial Ecosystems," Biogeosciences, No. 12, 13 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zinchenko.

Additional information

Translated from Meteorologiya i Gidrologiya, 2022, No. 10, pp. 59-77. https://doi.org/10.52002/0130-2906-2022-10-59-77.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinchenko, A.V., Privalov, V.I., Ivakhov, V.M. et al. Model-empirical Calculation of Methane and Carbon Dioxide Fluxes from Peatbog Soil. Russ. Meteorol. Hydrol. 47, 767–780 (2022). https://doi.org/10.3103/S1068373922100053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373922100053

Keywords

Navigation