Skip to main content
Log in

Extreme Precipitation in the European Arctic in Summer: Statistics and Synoptic Models

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Extreme precipitation in summer is classified in terms of belonging to the certain baseline probability distribution. The Pareto distribution can be used as its approximation. Events deviating from the baseline distribution are represented by the largest daily total precipitation. For them, the compliance with the probability (or the average repetition time) is completely lost, that is, any anomalies can occur, but they do not exceed some limit values typical of the Arctic. Thus, for the entire set of extremes, a specific distribution law of random variables can be introduced, that describes anomalies not exceeding certain absolute values; the presence of the boundary is felt only when approaching it. For 50 analyzed years at each station in the European Arctic, approximately four such anomalies were recorded. Synoptic objects in which super-large precipitation anomalies occur are determined: these are cyclones or pressure troughs with high water vapor content in the air (exceeding \(\sim\)25 kg/m2) and with mesoscale systems embedded into the fronts, which are characterized by the vertical wind shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. G. S. Golitsyn, Statistics and Dynamics of Natural Processes and Phenomena: Methods, Instruments, Results, 2nd ed. (URSS, Moscow, 2013) [in Russian].

    Google Scholar 

  2. O. G. Zolina, Statistical Modeling of Extreme Precipitation and Regional Atmospheric Moisture Cycle, Doctor’s Thesis in Physics and Mathematics (Moscow, 2018) [in Russian].

  3. O. G. Zolina and O. N. Bulygina, “Current Climatic Variability of Extreme Precipitation in Russia,” Fundamental’naya i Prikladnaya Klimatologiya, No. 1 (2016) [in Russian].

    Article  Google Scholar 

  4. R. D. Adams-Selin and R. H. Johnson, “Mesoscale Surface Pressure and Temperature Features Associated with Bow Echoes,” Mon. Wea. Rev., 138 (2010).

    Article  Google Scholar 

  5. M. Akperov, A. Rinke, I. I. Mokhov, V. A. Semenov, M. R. Parfenova, H. Matthes, M. Adakudlu, F. Boberg, J. H. Christensen, M. A. Dembitskaya, K. Dethloff, X. Fettweis, O. Gutjahr, G. Heinemann, T. Koenigk, N. V. Koldunov, R. Laprise, R. Mottram, O. Nikiema, D. Sein, S. Sobolowski, K. Winger, and W. Zhang, “Future Projections of Cyclone Activity in the Arctic for the 21st Century from Regional Climate Models (Arctic-CORDEX),” Glob. Planet. Change, 182 (2019).

    Article  Google Scholar 

  6. A. A. Balkema and L. de Haan, “Residual Life Time at Great Age,” Ann. Probab., 2 (1974).

    Article  Google Scholar 

  7. P. Berg, C. Moseley, and J. O. Haerter, “Strong Increase in Convective Precipitation in Response to Higher Temperatures,” Nature Geosci., 6 (2013).

    Article  Google Scholar 

  8. L. Boisvert, M. Grecu, and C.-L. Shie, “Understanding Moisture Transport Associated with Strong Cyclones in the New Arctic,” in EGU General Assembly 2020, Online, 4–8 May 2020.

  9. O. Buhler, “Large Deviation Theory and Extreme Waves,” in Proceedings of Aha Huliko‘a Hawaiian Winter Workshop University of Hawaii at Manoa, January 23–26, 2007.

  10. Discussion and Debate: From Black Swans to Dragon-Kings—Is There Life beyond Power Laws?, Eur. Phys. J.; Special Topics, No. 1, 205 (2012).

  11. P. R. Field and R. Wood, “Precipitation and Cloud Structure in Midlatitude Cyclones,” J. Climate, 20 (2007).

    Article  Google Scholar 

  12. J. M. Glisan and W. J. Gutowski Jr., “WRF Summer Extreme Daily Precipitation over the CORDEX Arctic,” J. Geophys. Res. Atmos., 119 (2014).

    Google Scholar 

  13. R. A. Houze, “100 Years of Research on Mesoscale Convective Systems,” in A Century of Progress in Atmospheric and Related Sciences, Chapter 17 (Amer. Meteorol. Soc., 2020).

  14. J. Janczura and R. Weron, “Black Swans or Dragon-Kings? A Simple Test for Deviations from the Power Law,” Eur. Phys. J.: Special Topics, 205 (2012).

    Article  Google Scholar 

  15. R. W. Katz, “Extreme Value Theory for Precipitation: Sensitivity Analysis for Climate Change,” Adv. Water Resour., 23 (1999).

    Article  Google Scholar 

  16. V. V. Kharin, F. W. Zwiers, X. B. Zhang, and G. C. Hegerl, “Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations,” J. Climate, 20 (2007).

    Article  Google Scholar 

  17. A. Kislov and T. Matveeva, “An Extreme Value Analysis of Wind Speed over the European and Siberian Parts of Arctic Region,” Atmos. Climate Sci., 6 (2016).

    Article  Google Scholar 

  18. D. Maraun, F. Wetterhall, A. M. Ireson, R. E. Chandler, E. J. Kendon, M. Widmann, S. Brienen, H. W. Rust, T. Sauter, M. Themessl, V. K. C. Venema, K. P. Chun, C. M. Goodess, R. G. Jones, C. Onof, M. Vrac, and I. Thiele-Eich, “Precipitation Downscaling under Climate Change. Recent Developments to Bridge the Gap between Dynamical Models and the End User,” Rev. Geophys., 48 (2010).

  19. C. M. McShane, The Spatial Characteristics of Extreme Precipitation in the Arctic. Undergraduate Honors Theses Honors Program (University of Colorado, Boulder, 2016).

  20. A. Moberg, P. D. Jones, D. Lister, A. Walther, M. Brunet, J. Jacobeit, L. V. Alexander, P. M. Della-Marta, J. Luterbacher, P. Yiou, D. Chen, A. M. G. Klein Tank, O. Saladie, J. Sigro, E. Aguilar, H. Alexandersson, C. Almarza, I. Auer, M. Barriendos, M. Begert, H. Bergstrom, R. Bohm, C. J. Butler, J. Caesar, A. Drebs, D. Founda, F.-W. Gerstengarbe, G. Micela, M. Maugeri, H. Osterle, K. Pandzic, M. Petrakis, L. Srnec, R. Tolasz, H. Tuomenvirta, P. C. Werner, H. Linderholm, A. Philipp, H. Wanner, and E. Xoplaki, “Indices for Daily Temperature and Precipitation Extremes in Europe Analyzed for the Period 1901–2000,” J. Geophys. Res., 111 (2006).

  21. D. Nash, D. Waliser, B. Guan, H. Ye, and F. M. Ralph, “The Role of Atmospheric Rivers in Extratropical and Polar Hydroclimate,” J. Geophys. Res.: Atmos., 123 (2018).

    Google Scholar 

  22. T. Nygard, T. Naakka, and T. Vihma, “Horizontal Moisture Transport Dominates the Regional Moistening Patterns in the Arctic,” J. Climate, 33 (2020).

    Article  Google Scholar 

  23. S. Pfahl and H. Wernli, “Quantifying the Relevance of Cyclones for Precipitation Extremes,” J. Climate, 25 (2012).

    Article  Google Scholar 

  24. J. Pickands, “Statistical Inference Using Extreme Order Statistics,” Ann. Statistics, 3 (1975).

    Google Scholar 

  25. D. M. Schultz, L. F. Bosart, B. A. Colle, H. C. Davies, C. Dearden, D. Keyser, O. Martius, P. J. Roebber, W. J. Steenburgh, and H. Volkert, “Extratropical Cyclones: A Century of Research on Meteorology’s Centerpiece,” in A Century of Progress in Atmospheric and Related Sciences, Chapter 16 (Amer. Meteorol. Soc., 2020).

  26. V. A. Semenov and L. Bengtsson, “Secular Trends in Daily Precipitation Characteristics: Greenhouse Gas Simulation with a Coupled AOGCM,” Climate Dynamics, 19 (2002).

    Article  Google Scholar 

  27. M. C. Serreze, J. E. Box, R. G. Barry, and J. E. Walsh, “Characteristics of Arctic Synoptic Activity, 1952–1989,” Meteorol. Atmos. Phys., 51 (1993).

    Article  Google Scholar 

  28. M. C. Serreze, A. D. Crawford, and A. P. Barrett, “Extreme Daily Precipitation Events at Spitsbergen, an Arctic Island,” Int. J. Climatol., 2015; published online in Wiley Online Library (wileyonlinelibrary.com).

    Article  Google Scholar 

  29. D. Sornette, “Dragon-Kings, Black Swans, and the Prediction of Crises,” Int. J. Terraspace Science and Eng., 2 (2009).

  30. D. Sornette and G. Ouillon, “Dragon-Kings: Mechanisms, Statistical Methods and Empirical Evidence,” Eur. Phys. J.: Special Topics, 205 (2012).

    Article  Google Scholar 

  31. N. N. Taleb, The Black Swan: The Impact of the Highly Improbable, 2nd ed. (Penguin, New York, 2010).

    Google Scholar 

  32. S. Wheatley and D. Sornette, “Multiple Outlier Detection in Samples with Exponential & Pareto Tails: Redeeming the Inward Approach & Detecting Dragon Kings,” SSRN Electronic J. (2015).

  33. O. Zolina, A. Kapala, C. Simmer, and S. K. Gulev, “Analysis of Extreme Precipitation over Europe from Different Reanalyses: A Comparative Assessment,” Glob. Planet. Change, 44 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kislov.

Additional information

Translated from Meteorologiya i Gidrologiya, 2021, No. 7, pp. 20-34. https://doi.org/10.52002/0130-2906-2021-7-20-34.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislov, A.V., Antipina, U.I. & Korneva, I.A. Extreme Precipitation in the European Arctic in Summer: Statistics and Synoptic Models. Russ. Meteorol. Hydrol. 46, 434–443 (2021). https://doi.org/10.3103/S1068373921070025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921070025

Keywords

Navigation