Skip to main content
Log in

Assessing the Transport of Volcanic Aerosol in the Stratosphere over Tomsk and Vladivostok from Lidar Data

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The transport of volcanic aerosol in the atmosphere after the eruptions of the Grimsvotn and Nabro volcanoes in 2011 is analyzed using the method of Lagrangian particle trajectories. It was impossible to identify volcanic aerosol after the Grimsvotn eruption using data of lidar observations over Tomsk and Vladivostok against the existing background aerosol. At that time there was strong horizontal mixing in the Northern Hemisphere atmosphere. Volcanic aerosol formed after the Nabro eruption was clearly manifested in the form of aerosol scattering peaks over Vladivostok and Tomsk. This is proved by data of the CALIPSO space lidar and by the satellite observations of sulfur dioxide with GOME-2. The dynamics of the eruptive aerosol cloud formation over the Northern Hemisphere is traced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. S. Balin, A. G. Borovoi, V. D. Burlakov, S. I. Dolgii, M. G. Klemasheva, A. V. Konoshonkin, G. P. Kokhanenko, N. V. Kustova, V. N. Marichev, G. G. Matvienko, A. A. Nevzorov, A. V. Nevzorov, I. E. Penner, O. A. Romanovskii, S. V. Samoilova, A. Ya. Sukhanov, O. V. Kharchenko, and V. A. Shishko, Lidar Monitoring of Cloud and Aerosol Fields, Trace Gases, and Meteorological Parameters, Ed. by G. G. Matvienko (IOA, Tomsk, 2015) [in Russian].

  2. S. I. Dolgii, V. D. Burlakov, A. P. Makeev, A. V. Nevzorov, K. A. Shmirko, A. N. Pavlov, S. Yu. Stolyarchuk, O. A. Bukin, A. P. Chaykovskii, F. P. Osipenko, and D. A. Trifonov, “Aerosol Disturbances in the Stratosphere after the Eruption of the Grimsvotn Volcano (Iceland, May 2011) According to Data of CIS-LiNet CIS Lidar Network Stations in Minsk, Tomsk, and Vladivostok,” Optika Atmosfery i Okeana, No. 7, 26 (2013) [in Russian].

  3. A. V. El’nikov, G. M. Krekov, and V. N. Marichev, “Lidar Observations of Stratospheric Aerosol Layer over Western Siberia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 8, 24 (1988) [in Russian].

  4. V. N. Marichev and I. V. Samokhvalov, “Lidar Observations of Aerosol Volcanic Layers in the Stratosphere of Western Siberia in 2008–2010,” Optika Atmosfery i Okeana, No. 3, 24 (2011) [in Russian].

  5. I. V. Samokhvalov, Yu. D. Kopytin, I. I. Ippolitov, Yu. S. Valin, V. V. Zuev, V. M. Klimkin, S. V. Lazarev, G. G. Matvienko, V. M. Mitchenkov, A. V. Sosnin, G. S. Khmel’nitskii, V. S. Shamanaev, A. E. Dudel’zak, I. E. Naats, and V. S. Smirnov, Laser Sounding of the Troposphere and Underlying Surface, Ed. by V. E. Zuev (Nauka, Novosibirsk, 1987) [in Russian].

  6. A. A. Cheremisin, A. V. Kushnarenko, V. N. Marichev, S. V. Nikolashkin, and P. V. Novikov, “Meteorological Conditions and Potar Stratospheric Clouds over Yakutsk in Winter 2004/05,” Meteorol. Gidrol., No. 3 (2007) [Russ. Meteorol. Hydrol., No. 3, 32 (2007)].

  7. A. A. Cheremisin, V. N. Marichev, and P. V. Novikov, “Lidar Observations of Volcanic Aerosol Content in the Atmosphere over Tomsk,” Meteorol. Gidrol., No. 9 (2011) [Russ. Meteorol. Hydrol., No. 9, 36 (2011)].

  8. A. A. Cheremisin, V. N. Marichev, and P. V. Novikov, “Transport of Polar Stratospheric Clouds from the Arctic to Tomsk in January 2010,” Optika Atmosfery i Okeana, No. 2, 26 (2013) [Atmos. Ocean. Opt., No. 6, 26 (2013)].

  9. A. A. Cheremisin, P. V. Novikov, I. S. Shnipov, V. V. Bychkov, and B. M. Shevtsov, “Lidar Observations and Formation Mechanism of the Structure of Stratospheric and Mesospheric Aerosol Layers over Kamchatka,” Geomagnetizm i Aeronomiya, No. 5, 52 (2015) [Geomagnetism and Aeronomy, No. 5, 52 (2015)].

  10. A. Bourassa, A. Robock, W. Randel, T. Deshler, L. A. Rieger, N. D. Lloyd, E. J. Llewellyn, and D. A. Degenstein, “Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport,” Science, 337 (2012).

  11. CALIPSO Science Team, CALIPSO/CALIOP Level 1B, Lidar Profile Data, Version 3.02 (NASA Atmospheric Science Data Center (ASDC), Hampton, VA, USA) (Accessed 10 March 2018).

  12. A. A. Cheremisin, V. N. Marichev, P. V. Novikov, T. O. Barashkov, and D. A. Bochkovsky, “Analysis of Polar Stratospheric Cloud Observations at Tomsk in January 2016,” in Proceeding of SPIE, 22nd Intern. Symp. Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk (2016).

    Google Scholar 

  13. L. Clarisse, P.-F. Coheur, N. Theys, D. Hurtmans, and C. Clerbaux, “The 2011 Nabro Eruption, a SO2 Plume Height Analysis Using IASI Measurements,” Atmos. Chem. Phys., 14 (2014).

  14. R. R. Draxler, HYSPLIT4 User’s Guide, NOAA Technical Memorandum ERL ARL-230 (1999).

    Google Scholar 

  15. T. D. Fairlie, J.-P. Vernier, M. Natarajan, and K. M. Bedka, “Dispersion of the Nabro Volcanic Plume and Its Relation to the Asian Summer Monsson,” Atmos. Chem. Phys., 14 (2014).

  16. M. Fromm, G. Nedoluha, and Z. Charvat, “Comment on “Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport”, Science, 339 (2013).

  17. GDAS: Global Data Assimilation System, http://ready.arl.noaa.gov/gdas1.php.

  18. “Global Volcanism Program, 2011. Report on Nabro (Eritrea),” in Weekly Volcanic Activity Report, 8 June–14 June 2011, Ed. by S. K. Sennert (Smithsonian Institution and US Geological Survey), http://volano.si.edu/showreport.cfm?doi=GVP.WVAR20110608-221101.

  19. Icelandic Met Office, http://en.vedur.is/about-imo/news/nr/2174.

  20. V. M. Kerminen, J. V. Niemi, H. Timonen, M. Aurela, A. Frey, S. Carbone, S. Saarikoski, K. Teinile, J. Hakkarainen, J. Tamminen, J. Vira, M. Prank, M. Sofiev, and R. Hillamo, “Characterization of a Volcanic Ash Episode in Southern Finland Caused by the Grimsvotn Eruption in Iceland in May 2011,” Atmos. Chem. Phys., 11 (2011).

  21. S. M. Khaykin, S. Godin-Beekmann, P. Keckhut, A. Hauchecorne, J. Jumelet, J. Vernier, A. Bourassa, D. Degenstein, L. Rieger, C. Bingen, F. Vanhellemont, C. Robert, M. DeLand, and P. Bhartia, “Variability and Evolution of the Midlatitude Stratospheric Aerosol Budget from 22 Years of Ground-based Lidar and Satellite Observations,” Atmos. Chem. Phys., 17 (2017).

  22. S. Kremser, L. W. Thomason, M. von Hobe, M. Hermann, T. Deshler, C. Timmreck, M. Toohey, A. Stenke, J. P. Schwarz, R. Weigel, S. Fueglistaler, F. J. Prata, J.-P. Vernier, H. Schlager, J. E. Barnes, J.-C. Antuea-Marrero, D. Fairlie, M. Palm, E. Mahieu, J. Notholt, M. Rex, C. Bingen, F. Vanhellemont, A. Bourassa, J. M. C. Plane, D. Klocke, S. A. Carn, L. Clarisse, T. Trickl, R. Neely, A. D. James, L. Rieger, J. C. Wilson, and B. Meland, “Stratospheric Aerosol—Observations, Processes, and Impact on Climate,” Rev. Geophys., No. 2, 54 (2016).

  23. K. Kvietkus, J. Sakalys, J. Didzbalis, I. Garbariene, N. Spirkauskait, and V. Remeikis, “Atmospheric Aerosol Episodes over Lithuania after the May 2011 Volcano Eruption at Grimsvotn, Iceland,” Atmos. Res., 122 (2013).

  24. London Volcanic Ash Advisory Centre (VAAC)—Issued Graphics, http://www.metoffice.gov.uk/aviaion/vaac/data/VAG_1306023643.png.

  25. Met Office Stratospheric Assimilated: Standard Assimilated Data from 1991 to Present. NCAS British Atmospheric Data Centre, 10 March 2018 (Met Office, 2007), http://catalogue.ceda.ac.uk/uuid/7a62862f2f43c0bdf4e7d152b6cb59e4.

  26. MODIS Collection 6 NRT Hotspot/Active Fire Detection MCD14DL, https://earthdata.nasa.gov/firms.

  27. NCEP Reanalysis Data; http://www.esrl.noaa.gov/psd.

  28. P. Sawamura, J. P. Vernier, J. E. Barnes, T. A. Berkoff, E. J. Welton, L. Alados-Arboledas, F. Navas-Guzmen, G. Pappalardo, L. Mona, F. Madonna, D. Lange, M. Sicard, S. Godin-Beekmann, G. Payen, Z. Wang, S. Hu, S. N. Tripathi, C. Cordoba-Jabonero, and R. M. Hoff, “Stratospheric AOD after the 2011 Eruption of Nabro Volcano Measured by Lidars over the Northern Hemisphere,” Environ. Res. Lett., 7 (2012).

  29. A. Stohl, “Computation, Accuracy and Applications of Trajectories—A Review and Bibliography,” Atmos. Environ., 32 (1998).

  30. A. Stohl, C. Forster, A. Frank, P. Seibert, and G. Wotawa, “Technical Note: The Lagrangian Particle Dispersion Model FLEXPART Version 6.2,” Atmos. Chem. Phys., 5 (2005).

  31. Support to Aviation Control Service, http://sacs.aeronomie.be.

  32. N. Theys, R. Campion, L. Clarisse, H. Brenot, J. van Gent, B. Dils, S. Corradini, L. Merucci, P.-F. Coheur, M. van Roozendael, D. Hurtmans, C. Clerbaux, S. Tait, and F. Ferrucci, “Volcanic SO2 Fluxes Derived from Satellite Data: A Survey Using OMI, GOME-2, IASI and MODIS,” Atmos. Chem. Phys., 13 (2013).

  33. J.-P. Vernier, L. W. Thomason, T. D. Fairlie, P. Minnis, R. Palikonda, and K. M. Bedka, “Comment on “Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport”, Science, 339 (2013).

  34. J. Zhuang and F. Yi, “Aerosol Evolution Observed Jointly by Lidars at a Mid-latitude Site and CALIPSO,” Atmos. Environ., 140 (2016).

Download references

Acknowledgments

The authors thank UK Met Office and LANCE FIRMS (NASA/GSFC/ESDIS) for data provision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Cheremisin.

Additional information

Russian Text © The Author(s), 2019, published in Meteorologiya i Gidrologiya, 2019, No. 5, pp. 50–62.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheremisin, A.A., Marichev, V.N., Novikov, P.V. et al. Assessing the Transport of Volcanic Aerosol in the Stratosphere over Tomsk and Vladivostok from Lidar Data. Russ. Meteorol. Hydrol. 44, 345–354 (2019). https://doi.org/10.3103/S1068373919050066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373919050066

Keywords

Navigation