Skip to main content
Log in

Variations in Surface Concentration of Fine Particulate Matter in Central Regions of the European Part of Russia

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The model estimation is presented for the impact of interaction between anthropogenic and biogenic emissions of trace gases and aerosols on the mass concentration of the fine fraction of particulate matter (PM2.5) in the central region of the European part of Russia. The numerical study is performed with the CHIMERE chemistry transport model taking into account the formation of secondary organic aerosol from the oxidation of semivolatile organic compounds. The simulation results are in agreement with data of PM2.5 measurements at the Mosekomonitoring stations in Moscow. It is shown that the anthropogenic-biogenic interaction results in the growth of PM2.5 concentration. Its relative value varies within the analyzed region from several percent to several tens of percent and leads to the considerable (by 1.5 times) increase in the number of episodes in which average daily PM2.5 concentration exceeds the maximum permissible concentration accepted in Russia. It is found that the revealed increase in the number of such episodes is mainly caused by the accelerated formation of biogenic secondary organic aerosol in the presence of anthropogenic air pollution which accounts (on average over the region and season) for ∼60% of its surface mass concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. B. Konovalov, N. F. Elanskii, A. M. Zvyagintsev, I. B. Belikov, and M. Beekmann, “Validation of Chemistry Transport Model of the Lower Atmosphere in the Central European Region of Russia Using Ground-based and Satellite Measurement Data,” Meteorol. Gidrol., No. 4 (2009) [Russ. Meteorol. Hydrol., No. 4, 34 (2009)].

  2. I. N. Kuznetsova, I. B. Konovalov, A. A. Glazkova, E. V. Berezin, M. Beekmann, and E.-D. Schulze, “Estimation of Transboundary Transport Contribution to the Air Pollution in the Far East Region Using the Chemistry Transport Model,” Meteorol. Gidrol., No. 3 (2013) [Russ. Meteorol. Hydrol., No. 3, 38 (2013)].

  3. I. N. Kuznetsova, I. B. Konovalov, A. A. Glazkova, M. I. Nakhaev, R. B. Zaripov, E. A. Lezina, A. M. Zvyagintsev, and M. Beekmann, “Observed and Calculated Variability of the Particulate Matter Concentration in Moscow and in Zelenograd,” Meteorol. Gidrol., No. 3 (2011) [Russ. Meteorol. Hydrol., No. 3, 36 (2011)].

  4. Maximum Permissible Concentrations (MPC) of Pollutants in Air over Populated Areas. Annex 8 to GN 2.1.6.1338–03 (Rospotrebnadzor, Moscow, 2010) [in Russian].

  5. I. Yu. Shalygina, M. I. Nakhaev, I. N. Kuznetsova, E. V. Berezin, I. B. Konovalov, D. V. Blinov, and A. A. Kirsanov, “Comparison of Surface Concentration of Polluting Substances Calculated by Chemistry Transport Models with Measurement Data for the Moscow Region,” Optika Atmosfery i Okeana, No. 1, 30 (2017).

  6. R. Ahmadov, S. McKeen, A. Robinson, R. Bahreini, A. M. Middlebrook, J. A. de Gouw, J. Meagher, E.-Y. Hsie, E. Edgerton, and S. Shaw, “A Volatility Basis Set Model for Summertime Secondary Organic Aerosols over the Eastern United States in 2006,” J. Geophys. Res., 117 (2012).

  7. E. Athanasopoulou, H. Vogel, B. Vogel, A. Tsimpidi, S. N. Pandis, C. Knote, and C. Fountoukis, “Modeling the Meteorological and Chemical Effects of Secondary Organic Aerosols during an EUCAARI Campaign,” Atmos. Chem. Phys., 13 (2013).

  8. O. Boucher and D. Randall, “Clouds and Aerosols,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, New York, 2013).

    Google Scholar 

  9. A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. Palmer, and C. Geron, “Estimates of Global Terrestrial Isoprene Emissions Using MEGAN (Model of Emissions of Gases and Aerosols from Nature),” Atmos. Chem. Phys., 6 (2006).

  10. A. Hodzic, J. L. Jimenez, S. Madronich, M. R. Canagaratna, P. F. DeCarlo, L. Kleinman, and J. Fast, “Modeling Organic Aerosols in a Megacity: Potential Contribution of Semi-volatile and Intermediate Volatility Primary Organic Compounds to Secondary Organic Aerosol Formation,” Atmos. Chem. Phys., 10 (2010).

  11. C. Hoyle, R. Boy, M. Donahue, J. L. Fry, M. Glasius, A. Guenther, A. G. Hallar, K. H. Hartz, M. D. Petters, T. Petaja, T. Rosenoern, and A. P. Sullivan, “A Review of the Anthropogenic Influence on Biogenic Secondary Organic Aerosol,” Atmos. Chem. Phys., 11 (2011).

  12. J. Kirkby, J. Duplissy, K. Sengupta, C. Frege, H. Gordon, C. Williamson, M. Heinritzi, M. Simon, C. Yan, J. Almeida, J. Trostl, T. Nieminen, I. K. Ortega, R. Wagner, A. Adamov, A. Amorim, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, S. Brilke, X. Chen, J. Craven, A. Dias, S. Ehrhart, R. C. Flagan, A. Franchin, C. Fuchs, R. Guida, J. Hakala, C. R. Hoyle, T. Jokinen, H. Junninen, J. Kangasluoma, J. Kim, M. Krapf, A. Kurten, A. Laaksonen, K. Lehtipalo, V. Makhmutov, S. Mathot, U. Molteni, A. Onnela, O. Perakyla, F. Piel, T. Petaja, A. P. Praplan, K. Pringle, A. Rap, N. A. D. Richards, I. Riipinen, M. P. Rissanen, L. Rondo, N. Sarnela, S. Schobesberger, C. E. Scott, J. H. Seinfeld, M. Sipila, G. Steiner, Y. Stozhkov, F. Stratmann, A. Tome, A. Virtanen, A. L. Vogel, A. C. Wagner, P. E. Wagner, E. Weingartner, D. Wimmer, P. M. Winkler, P. Ye, X. Zhang, A. Hansel, J. Dommen, N. M. Donahue, D. R. Worsnop, U. Baltensperger, M. Kulmala, K. S. Carslaw, and J. Curtius, “Ion-induced Nucleation of Pure Biogenic Particles,” Nature, No. 7604, 533 (2016).

  13. I. B. Konovalov, M. Beekmann, E. V. Berezin, P. Formenti, and M. O. Andreae, “Probing into the Aging Dynamics of Biomass Burning Aerosol by Using Satellite Measurements of Aerosol Optical Depth and Carbon Monoxide,” Atmos. Chem. Phys., 17 (2017).

  14. I. B. Konovalov, M. Beekmann, E. V. Berezin, H. Petetin, T. Mielonen, I. N. Kuznetsova, and M. O. Andreae, “The Role of Semi-volatile Organic Compounds in the Mesoscale Evotution of Biomass Burning Aerosol: A Modeling Case Study of the 2010 Mega-fire Event in Russia,” Atmos. Chem. Phys., 15 (2015).

  15. I. B. Konovalov, M. Beekmann, B. d’Anna, and C. George, “Significant Light Induced Ozone Loss on Biomass Burning Aerosol: Evidence from Chemistry-transport Modeling Based on New Laboratory Studies,” Geophys. Res. Lett., 39 (2012).

  16. M. A. Martinez, P. Caballero, O. Carrillo, A. Mendoza, and G. M. Mejia, “Chemical Characterization and Factor Analysis of PM2.5 in Two Sites of Monterrey, Mexico,” J. Air & Waste Management Association, No. 7, 62 (2012).

  17. H. Matsui and M. Koike, “Enhancement of Aerosol Responses to Changes in Emissions over East Asia by Gas-oxidant-aerosol Coupling and Detailed Aerosol Processes,” J. Geophys. Res. Atmos., 121 (2016).

  18. H. Matsui, M. Koike, Y. Kondo, N. Takegawa, A. Wiedensohler, J. D. Fast, and R. A. Zaveri, “Volatility Basis-set Approach Simutation of Organic Aerosol Formation in East Asia: Implications for Anthropogenic-biogenic Interaction and Controllable Amounts,” Atmos. Chem. Phys., 14 (2014).

  19. L. Menut, B. Bessagnet, D. Khvorostyanov, M. Beekmann, N. Blond, A. Colette, I. Coll, G. Curci, G. Foret, A. Hodzic, S. Mailler, F. Meleux, J.-L. Monge, I. Pison, G. Siour, S. Turquety, M. Valari, R. Vautard, and M. G. Vivanco, “CHIMERE 2013: A Model for Regional Atmospheric Composition Modeling,” Geosci. Model Dev., 6 (2013).

  20. B. N. Murphy and S. N. Pandis, “Simulating the Formation of Semivolatile Primary and Secondary Organic Aerosol in a Regional Chemical Transport Model,” Environ. Sci. Technol., 43 (2009).

  21. A. Nenes, C. Pilinis, and S. Pandis, “ISORROPIA: A New Thermodynamic Model for Inorganic Multicomponent Atmospheric Aerosols,” Aquatic Geochem., 4 (1998).

  22. A. L. Robinson, N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis, “Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging,” Science, 315 (2007).

  23. J. Schwartz, “Air Pollution and Hospital Admissions for Respiratory Disease,” Epidemiology, 7 (1996).

  24. J. G. Slowik, C. Stroud, J. W. Bottenheim, P. C. Brickell, R. Y.-W. Chang, J. Liggio, P. A. Makar, R. V. Martin, M. D. Moran, N. C. Shantz, S. J. Sjostedt, A. van Donkelaar, A. Vlasenko, H. A. Wiebe, A. G. Xia, J. Zhang, W. R. Leaitch, and J. P. D Abbatt, “Characterization of a Large Biogenic Secondary Organic Aerosol Event from Eastern Canadian Forests,” Atmos. Chem. Phys., 10 (2010).

  25. D. V. Spracklen, J. L. Jimenez, K. S. Carslaw, D. R. Worsnop, M. J. Evans, G. W. Mann, Q. Zhang, M. R. Canagaratna, J. Allan, H. Coe, G. McFiggans, A. Rap, and P. Forster, “Aerosol Mass Spectrometer constraint on the Global Secondary Organic Aerosol Budget,” Atmos. Chem. Phys., 11 (2011).

  26. WHO, 2006. Air Quality Guidelines: Global Update 2005. Particular Matler, Ozone, Nitrogen Dioxide and Sulfur Dioxide (WHO, Geneva, 2006).

  27. Q. J. Zhang, M. Beekmann, F. Drewnick, F. Freutel, J. Schneider, M. Crippa, A. S. H. Prevot, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, V. Gros, A. Borbon, A. Colomb, V. Michoud, J.-F. Doussin, H. A. C. Deier van der Gon, M. Haeffelin, J.-C. Dupont, G. Siour, H. Petetin, B. Bessagnet, S. N. Pandis, A. Hodzic, O. Sanchez, C. Honore, and O. Perrussel, “Formation of Organic Aerosol in the Paris Region during the MEGAPOLI Summer Campaign: Evaluation of the Volatility-basis-set Approach within the CHIMERE Model,” Atmos. Chem. Phys., 13 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kuznetsova.

Additional information

Russian Text © The Author(s), 2019, published in Meteorologiya i Gidrologiya, 2019, No. 5, pp. 14–25.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konovalov, I.B., Kuznetsova, I.N., L’vova, D.A. et al. Variations in Surface Concentration of Fine Particulate Matter in Central Regions of the European Part of Russia. Russ. Meteorol. Hydrol. 44, 317–325 (2019). https://doi.org/10.3103/S1068373919050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373919050029

Keywords

Navigation