Skip to main content
Log in

Validation of Results of Atmospheric Temperature and Humidity Sounding with a Fourier Infrared Spectrometer onboard the Meteor-M No. 2 Satellite

  • Instruments, Observations, and Processing
  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The accuracy of retrieving the profiles of temperature and relative humidity from data of IKFS-2 Russian satellite Fourier spectrometer installed onboard the Meteor-M No. 2 satellite is assessed. The retrieved data were compared with radiosonde data and with the results of numerical weather prediction. It was found that the root-mean-square error of the vertical distribution of temperature in the air column of 1000-100 hPa as compared with radiosonde data does not exceed 2.5 K near the Earth surface and is within 2 K at the other levels. The maximum error of relative humidity retrieval was registered in the tropopause area and made up 35%. The use of water vapor mixing ratio for calculating relative humidity reduced the maximum error to ∼25% in the tropopause area and to 15% at the other levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Asmus, Yu. M. Timofeyev, A. V. Polyakov, A. B. Uspensky, Yu. M. Golovin, F. S. Zavelevich, D. A. Kozlov, A. N. Rublev, A. V. Kukharsky, V. P. Pyatkin, and E. V. Rusin, “Atmospheric Temperature Sounding with the Fourier Spectrometer,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 53 (2017) [Izv., Atmos. Oceanic Phys., No. 4, 53 (2017)].

    Google Scholar 

  2. E. M. Verbitskaya and S. O. Romanskii, “The Results of Testing Short-range Operational Forecasts of WRF-ARW Khab-15 Mesoscale Model at the Russian Far East Points,” in The Results of Testing New and Improved Technologies, Models, and Methods of Hydrometeorological Forecasting, No. 43 (2016) [in Russian].

  3. Yu. M. Golovin, F. S. Zavelevich, D. A. Kozlov, I. A. Kozlov, D. O. Monakhov, A. G. Nikulin, A. B. Uspenskii, A. N. Rublev, and A. V. Kukharskii, “IKFS-2 Infrared Fourier Spectrometer: The Results of Operation Onboard the Meteor-M No. 2 Weather Satellite,” Issledovanie Zemli iz Kosmosa, No. 4 (2017) [in Russian].

  4. D. A. Kozlov, Studying the Accuracy Characteristics and Calibration Methods for Onboard Infrared Fourier Spectrometers Intended for Atmospheric Temperature and Humidity Sounding, Thesis for a Degree of Candidate of Technical Sciences (2016) [in Russian].

  5. A. V. Polyakov, Yu. M. Timofeev, and Ya. A. Virolainen, “Using Artificial Neural Networks in the Temperature and Humidity Sounding of the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 50 (2014) [Izv., Atmos. Oceanic Phys., No. 3, 50 (2014)].

    Google Scholar 

  6. A. V. Polyakov, Yu. M. Timofeev, and A. B. Uspenskii, “Atmospheric Temperature and Humidity Sounding with IKFS-2 High Spectral Resolution Satellite IR Sounder,” Issledovanie Zemli iz Kosmosa, No. 5 (2009) [in Russian].

  7. A. V. Polyakov, Yu. M. Timofeev, A. B. Uspenskii, and A. V. Kukharskii, “IKFS-2 Satellite Atmospheric Sounder. Part 2. Validation of Air Temperature Sounding Results,” Issledovanie Zemli iz Kosmosa, No. 1 (2018) [in Russian].

  8. Yu. M. Timofeev, Global System for the Monitoring of Atmosphere and Surface Parameters (St. Petersburg State Univ., St. Petersburg, 2010) [in Russian].

    Google Scholar 

  9. Yu. S. Chetyrin and A. N. Davidenko, A Method for Retrieving Vertical profiles of Atmospheric Parameters for Their Use by the Forecast Departments of the Far East Hydrometeorological Center, https://doi.org/method.meteorf.ru/publ/sb/sb42/chetir.pdf.

  10. E. H. Kwon, B. J. Sohn, W. L. Smith, and J. Li, “Validating IASI Temperature and Moisture Sounding Retrievals over East Asia Using Radiosonde Observations,” J. Atmos. Ocean. Technol., 29 (2012).

  11. L. M. Miloshevich, A. Paukkunen, H. Vomel, and S. Oltmans, “Development and Validation of a Time-lag Correction for Vaisala Radiosonde Humidity Measurements,” J. Atmos. Ocean. Technol., No. 9, 21 (2004).

    Google Scholar 

  12. Principles of Humidity—Dalton’s Law, https://www.epluse.su/download/sonst/feuchte_en.pdf.

  13. O. Vaisala, Humidity Conversion Formulas. Calculation Formulas for Humidity (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Filei.

Additional information

Russian Text © A.A. Filei, A.N. Davidenko, Yu.V. Kiseleva, D.A. Kozlov, E.I. Kholodov, 2019, published in Meteorologiya i Gidrologiya, 2019, No. 3, pp. 110–117.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filei, A.A., Davidenko, A.N., Kiseleva, Y.V. et al. Validation of Results of Atmospheric Temperature and Humidity Sounding with a Fourier Infrared Spectrometer onboard the Meteor-M No. 2 Satellite. Russ. Meteorol. Hydrol. 44, 216–221 (2019). https://doi.org/10.3103/S1068373919030087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373919030087

Keywords

Navigation