Skip to main content
Log in

Marine Observational Systems as an Integral Part of Operational Oceanology: A Review

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The paper presents an overview of the current marine observational systems which provide primary information for operational monitoring and predicting the variability of the main hydrophysical fields on the scales from several tens to several thousand kilometers (of the order of the Rossby baroclinic deformation radius and higher). Such systems provide the regular implementation of oceanographic and marine meteorological observations, their rapid interpretation and delivery to users; this is a subject of a relatively new discipline, operational oceanology. The active development of this discipline during the recent two decades suggests that the forecasting of the marine environment state will eventually reach the same level of accuracy and reliability as in operational meteorology, a more successful and older discipline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Asmus and V. A. Krovotyntsev, “Assessment of Polar Ice Conditions Based on Okean Satellite Data,” in New Information Technologies and Remote Methods of Sectorial Monitoring of World Ocean Fishery Regions (VNIRO, Moscow, 1996) [in Russian].

  2. V. V. Asmus, O. E. Milekhin, V. A. Krovotyntsev, and A. S. Selivanov, “The Use of Okean Satellite Radar Data for Solving Problems of Hydrometeorology and Environmental Monitoring,” Issledovanie Zemli iz Kosmosa, No. 3 (2002) [in Russian].

  3. V. V. Asmus, P. A. Nikitin, A. E. Popov, and Yu. G. Spiridonov, “Digital Processing of Radar Images Received from Kosmos-1500 Satellite,” Issledovanie Zemli iz Kosmosa, No. 3 (1985) [in Russian].

  4. A. I. Burtsev, V. A. Krovotyntsev, M. Nazirov, P. A. Nikitin, and Yu. G. Spiridonov, “Radar Maps of the Arctic and Antarctica Based on Kosmos-1500 Satellite Data and Preliminary Results of Their Analysis,” Issledovanie Zemli iz Kosmosa, No. 3 (1985) [in Russian].

  5. V. G. Grigorieva and S. I. Badulin, “Wind Wave Characteristics Based on Visual Observations and Satellite Altimetry,” Okeanologiya, No. 1, 56 (2016) [Oceanology, No. 1, 56 (2016)].

    Google Scholar 

  6. D. G. Gryazin, Computation and Designing of Buoys for Sea Wave Measurements (SPbGITMO(TU), St. Petersburg, 2000) [in Russian].

    Google Scholar 

  7. V. B. Zalesny, V. I. Agoshkov, V. P. Shutyaev, F. Le Dimet, and V. O. Ivchenko, “Numerical Modeling of Ocean Hydrodynamics with Variational Assimilation of Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 4, 52 (2016)].

    Google Scholar 

  8. A. A. Zelenko, R. M. Vil’fand, Yu. D. Resnyanskii, B. S. Strukov, M. D. Tsyrulnikov, and P. I. Svirenko, “An Ocean Data Assimilation System and Reanalysis of the World Ocean Hydrophysical Fields,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 4, 52 (2016)].

    Google Scholar 

  9. A. A. Zelenko, Yu. D. Resnyanskii, and B. S. Strukov, “Operational Oceanology at the Hydrometcenter of Russia: Current and Near Future Status,” Trudy GOIN, No. 216 (2015) [in Russian].

  10. A. A. Zelenko, Yu. D. Resnyanskii, M. D. Tsyrul’nikov, B. S. Strukov, and P. I. Svirenko, “Monitoring of Largescale Structure of Ocean Hydrophysical Fields,” in Modern Problems of Ocean and Atmosphere Dynamics (Triada LTD, Moscow, 2010) [in Russian].

    Google Scholar 

  11. R. A. Ibraev, R. N. Khabeev, and K. V. Ushakov, “Eddy-Resolving 1/10° Model of the World Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].

    Google Scholar 

  12. M. N. Kaurkin, R. A. Ibrayev, and K. P. Belyaev, “ARGO Data Assimilation into the Ocean Dynamics Model with High Spatial Resolution Using Ensemble Optimal Interpolation (EnOI),” Okeanologiya, No. 6, 56 (2016) [Oceanology, No. 6, 56 (2016)].

    Google Scholar 

  13. G. K. Korotaev, Yu. B. Ratner, M. V. Ivanchik, A. L. Kholod, and A. M. Ivanchik, “Operational System for Diagnosis and Forecast of Hydrophysical Characteristics of the Black Sea,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 5, 52 (2016)].

    Google Scholar 

  14. V. A. Krovotyntsev and O. E. Milekhin, “Characteristics of Radar Backscattering of Arctic Sea Ice Derived from Okean-O1 Satellite Data,” Issledovanie Zemli iz Kosmosa, No. 2 (1988) [in Russian].

  15. V. A. Krovotyntsev, O. E. Milekhin, V. I. Popov, and Yu. G. Spiridonov, “Space Radar Observations of Ice Coast Dynamics and Iceberg Drift in the Antarctic,” Issledovanie Zemli iz Kosmosa, No. 4 (1991) [in Russian].

  16. O. Yu. Lavrova, A. G. Kostyanoi, S. A. Lebedev, M. I. Mityagina, A. I. Ginzburg, and N. A. Sheremet, Integrated Satellite Monitoring of Russian Seas (IKI RAN, Moscow, 2011) [in Russian].

    Google Scholar 

  17. K. V. Lebedev, “An Argo-based Model for Investigation of the Global Ocean (AMIGO),” Okeanologiya, No. 2, 56 (2016) [Oceanology, No. 2, 56 (2016)].

    Google Scholar 

  18. G. I. Marchuk, B. E. Paton, G. K. Korotaev, and V. B. Zalesny, “Data-computing Technologies: A New Stage in the Development of Operational Oceanography,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 49 (2013) [Izv., Atmos. Oceanic Phys., No. 6, 49 (2013)].

    Google Scholar 

  19. A. S. Monin, V. M. Kamenkovich, and V. G. Kort, World Ocean Variability (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  20. S. V. Motyzhev, “Creation of Drifter Technology for the Ocean and the Atmosphere Monitoring,” Morskoi Gidrophyzicheskii Zhurnal, No. 6 (2016) [Phys. Oceanogr., No. 6 (2016)].

  21. Manual on Codes. International Codes, Vols. 1.1 and 1.2, WMO-No. 306 (WMO, 2016), https://library.wmo.int/opac.

  22. O. P. Nikitin and S. Yu. Kas’yanov, “On Drifter Observations of Currents and Temperature in the Barents and Kara Seas,” Trudy GOIN, No. 217 (2016) [in Russian].

  23. O. P. Nikitin and S. Yu. Kas’yanov, “Surface Currents of the Norwegian and Greenland Seas,” Trudy GOIN, No. 216 (2015) [in Russian].

  24. Space Radiolocation of the Earth Surface, Ed. by L. M. Mitnik and S. V. Viktorov (Gidrometeoizdat, Leningrad, 1990) [in Russian].

  25. K. V. Lebedev, A. S. Sarkisyan, and O. P. Nikitin, “Comparative Analysis of the North Atlantic Surface Circulation Reproduced by Three Different Methods,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 4, 52 (2016)].

    Google Scholar 

  26. V. I. Solov’ev, L. A. Anekeeva, I. S. Solov’eva, and A. B. Uspenskii, “World Ocean Surface Temperature Mapping Based on Geostationary Satellite Data,” Issledovanie Zemli iz Kosmosa, No. 3 (2001) [in Russian].

  27. V. I. Solov’ev and A. B. Uspenskii, “Development of the System for Remote Determination of Water Surface Temperature from Satellite Data,” Trudy Gidromettsentra Rossii, No. 326 (1993) [in Russian].

  28. V. I. Solov’ev and A. B. Uspenskii, “Current State and Prospects of Development of Remote Methods for Determination of Sea Surface Temperature from Space,” Issledovanie Zemli iz Kosmosa, No. 1 (1998) [in Russian].

  29. Yu. G. Spiridonov, O. E. Milekhin, V. I. Popov, and E. A. Sizenova, “Automated Construction of Antarctica Radar Map,” Trudy GosNITsIPR, No. 33 (1989) [in Russian].

  30. S. Abdalla, P. A. E. M. Janssen, and J.-R. Bidlot, “Jason-2 OGDR Wind and Wave Products: Monitoring, Validation and Assimilation,” Mar. Geodesy, 33 (2010).

    Google Scholar 

  31. S. Andersen, R. Tonboe, L. Kaleschke, G. Heygster, and L. T. Pedersen, “Intercomparison of Passive Microwave Sea Ice Concentration Retrievals over the High-concentration Arctic Sea Ice,” J. Geophys. Res., 112 (2007).

    Google Scholar 

  32. P. Bahurel, “Mercator Ocean Global to Regional Ocean Monitoring and Forecasting,” in Ocean Weather Forecasting: An Integrated View of Oceanography, Ed. by E. Chassignet and J. Verron (Springer Verlag, 2006).

    Google Scholar 

  33. M. A. Balmaseda, A. Vidard, and D. L. T. Anderson, “The ECMWF Ocean Analysis System: ORA-S3,” Mon. Wea. Rev., No. 8, 136 (2008).

    Google Scholar 

  34. V. Banzon, T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, “A Long-term Record of Blended Satellite and in Situ Sea-surface Temperature for Climate Monitoring, Modeling and Environmental Studies,” Earth Syst. Sci. Data, 8 (2016).

    Google Scholar 

  35. E. Bernard, C. Meinig, V. V. Titov, K. O’Neil, R. Lawson, K. Jarrott, R. Dfiley, F. Nelson, S. Tinti, C. von Hillebrandt, and P. Koltermann, “Tsunami Resilient Communities,” in Proceedings of OceanObs’ 09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 1, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).

    Google Scholar 

  36. L. Boehme, K. Kovacs, C. Lydersen, O. A. Nost, M. Biuw, J.-B. Charrassin, F. Roquet, G. Guinet, M. Meredith, K. Nicholls, S. Thorpe, D. P. Costa, B. Block, M. Hammill, G. Stenson, M. Muelbert, M. N. Bester, J. Plotz, H. Bornemann, M. Hindell, S. Rintoul, P. Lovell, and M. A Fedak, “Biologging in the Global Ocean Observing System,” in Proceedings of OceanObs’ 09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).

    Google Scholar 

  37. B. Bourles, R. Lumpkin, M. J. McPhaden, F. Hernandez, P. Nobre, E. Campos, L. Yu, S. Planton, A. Busalacchi, A. D. Moura, J. Servain, and J. Trotte, “The PIRATA Program: History, Accomplishments, and Future Directions,” Bull. Amer. Meteorol. Soc., 89 (2008).

    Google Scholar 

  38. L.-A. Breivik, T. Carrieres, S. Eastwood, A. Fleming, F. Girard-Ardhuin, J. Karvonen, R. Kwok, W. N. Meier, M. Makynen, L. T. Pedersen, S. Sandven, M. Simile, and R. Tonboe, “Remote Sensing of Sea Ice,” in Proceedings of OceanObs’ 09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).

    Google Scholar 

  39. L.-A. Breivik, S. Eastwood, O. Godrny, H. Schyberg, S. Andersen, and R. T. Tonboe, “Sea Ice Products for EUMETSAT Satellite Application Facility,” Can. J. Rem. Sens., No. 5, 27 (2001).

    Google Scholar 

  40. M. J. Carrier, H. Ngodock, S. Smith, G. Jacobs, P. Muscarella, T. Ozgokmen, B. Haus, and B. Lipphardt, “Impact of Assimilating Ocean Velocity Observations Inferred from Lagrangian Drifter Data Using the NCOM-4DVAR,” Mon. Wea. Rev., 142 (2014).

    Google Scholar 

  41. D. B. Chelton, J. C. Ries, B. J. Haines, L. L. Fu, and P. S. Callahan, “Satellite Altimetry,” in Satellite Altimetry and Earth Sciences, Ed. by L.-L. Fu and A. Cazenave (Academic Press, 2001).

    Google Scholar 

  42. L. Cheng, J. Abraham, G. Goni, T. Boyer, S. Wijffels, R. Cowley, V. Gouretski, F. Reseghetti, S. Kizu, S. Dong, F. Bringas, M. Goes, L. Houpert, J. Sprintall, and J. Zhu, “XBT Science: Assessment of Instrumental Biases and Errors,” Bull. Amer. Meteorol. Soc., No. 6, 97 (2016).

    Google Scholar 

  43. R. E. Davis, “Observing the General Circulation with Floats,” Deep-Sea Res., 38 (1991).

    Google Scholar 

  44. R. E. Davis, J. T. Sherman, and J. Dufour, “Profiling ALACEs and Other Advances in Autonomous Subsurface Floats,” J. Atmos. Ocean. Tech., 18 (2001).

    Google Scholar 

  45. R. E. Davis, D. C. Webb, L. A. Regier, and J. Dufour, “The Autonomous Lagrangian Circulation Explorer (ALACE),” J. Atmos. Ocean. Tech., 9 (1992).

    Google Scholar 

  46. P. Dexter, V. Determmerman, and B. Hillard, “The International Co-ordination of Ship of Opportunity Programmes for Operations and Research,” in Proceedings of Oceanology International 96: The Global Ocean— Towards Operational Oceanography, Vol. 3 (Spearhead Exhibitions, New Malden, 1996).

    Google Scholar 

  47. C. J. Donlon, M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, “The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) System,” Rem. Sens. Environ., 116 (2012).

    Google Scholar 

  48. M. Drinkwater, H. Bonekamp, P. Bontempi, B. Chapron, C. Donlon, J.-L. Fellous, P. Digiacomo, E. Harrison, P.-Y. Letraon, and S. Wilson, “Status and Outlook for the Space Component of an Integrated Ocean Observing System,” in Proceedings of OceanObs,09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 1, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).

    Google Scholar 

  49. R. E. Duerr, R. L. Weaver, and M. Kaminski, “Data Acceptance Procedures and Levels of Service at the National Snow and Ice Data Center,” in 2010 IEEE International Geoscience and Remote Sensing Symposium, 25–30 July 2010, Honolulu, HI, USA (IEEE, New York, 2010).

    Google Scholar 

  50. N. Ebuchi and H. Kawamura, “Validation of Wind Speeds and Significant Wave Heights Observed by the TOPEX Altimeter around Japan,” J. Oceanogr., No. 4, 50 (1994).

    Google Scholar 

  51. E. Freeman, S. D. Woodruff, S. J. Worley, S. J. Lubker, E. C. Kent, W. E. Angel, D. I. Berry, P. Brohan, R. Eastman, L. Gates, W. Gloeden, Z. Ji, J. Lawrimore, N. A. Rayner, G. Rosenhagen, and S. R. Smith, “ICOADS Release 3.0: A Major Update to the Historical Marine Climate Record,” Int. J. Climatol., 37 (2017).

    Google Scholar 

  52. Y. Fujii, J. Cummings, Y. Xue, A. Schiller, T. Lee, M. A. Balmaseda, E. Remy, S. Masuda, G. Brassington, O. Alves, D. Cornuelle, M. Martin, P. Oke, G. Smith, and X. Yang, “Evaluation of the Tropical Pacifc Observing System from the Ocean Data Assimilation Perspective,” Quart. J. Roy. Meteorol. Soc., 141 (2015).

    Google Scholar 

  53. F. Girard-Ardhuin, R. Ezraty, and D. Croize-Fillon, “Arctic and Antarctic Sea Ice Concentration and Sea Ice Drift Satellite Products at Ifremer/CERSAT,” Mercator-Ocean Quarterly Newsletter, No. 28 (2008).

  54. G. Goni, D. Roemmich, R. Molinari, G. Meyers, C. Sun, T. Boyer, M. Baringer, V. Gouretski, P. DiNezio, F. Reseghetti, G. Vissa, S. Swart, R. Keeley, S. Garzoli, T. Rossby, C. Maes, and G. Reverdin, “The Ship of Opportunity Program,” in Proceedings of OceanObs09: Sustained Ocean Observations and Information for Soiety, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).

    Google Scholar 

  55. V. Gouretski and K. P. Koltermann, “How Much is the Ocean Really Warming?”, Geophys. Res. Lett., 34 (2007).

    Google Scholar 

  56. J. F. R. Gower, “Intercalibration of Wave and Wind Data from TOPEX/POSEIDON and Moored Buoys off the West Coast of Canada,” J. Geophys. Res., No. C2, 101 (1996).

    Google Scholar 

  57. S. K. Gulev, S. A. Josey, M. Bourassa, L.-A. Breivik, M. F. Cronin, C. Fairall, S. Gille, E. C. Kent, C. M. Lee, M. J. Mcphaden, P. M. S. Monteiro, U. Schuster, S. R. Smith, K. E. Trenberth, D. Wallace, and S. D. Woodruff, “Surface Energy, CO2 Fluxes and Sea Ice,” in Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 1, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).

    Google Scholar 

  58. S. K. Gulev, V. Grigorieva, A. Sterl, and D. Woolf, “Assessment of the Reliability of Wave Observations from Voluntary Observing Ships: Insights from the Validation of a Global Wind Wave Climatology Based on Voluntary Observing Ship Data,” J. Geophys. Res., No. C7, 108 (2003).

    Google Scholar 

  59. L. E. Holthuijsen, Waves in Oceanic and Coastal Waters (Cambridge Univ. Press, New York, 2007).

    Book  Google Scholar 

  60. P. A. Hwang, W. J. Teague, G. A. Jacobs, and D. W. Wang, “A Statistical Comparison of Wind Speed, Wave Height and Wave Period Derived from Satellite Altimeters and Ocean Buoys in the Gulf of Mexico Region,” J. Geophys. Res., 103 (1998).

    Google Scholar 

  61. P. A. E. M. Janssen, S. Abdalla, H. Hersbach, and J.-R. Bidlot, “Error Estimation of Buoy, Satellite, and Model Wave Height Data,” J. Atmos. Ocean. Technol., 24 (2007).

    Google Scholar 

  62. O. M. Johannessen, S. Sandven, L. H. Pettersson, K. Kloster, T. Hamre, J. Solhaug, A. M. Volkov, V. Asmus, O. E. Milekhin, V. A. Krovotyntsev, V. D. Grischenko, V. G. Smirnov, L. P. Bobylev, V. V. Melentyev, and V. Alexandrov, “ICEWATCH: Real-time Sea Ice Monitoring in the Northern Sea Eoute (a Cooperative Earth Observation Project between the Russian and the European Space Agencies),” Issledovanie Zemli iz Kosmosa, No. 2 (1988).

  63. O. M. Johannessen, A. M. Volkov, L. P. Bobylev, V. D. Grischenko, S. Sandven, L. H. Pettersson, V. V. Melentyev, V. V. Asmus, O. E. Milekhin, V. A. Krovotyntsev, V. G. Smirnov, V. Alexandrov, G. Duchossois, V. Kozlov, G. Kohlhammer, and G. Solaas, “ICEWATCH: Real-time Sea-ice Monitoring in the Northern Sea Route (a Cooperative Earth Observation Project between the Russian and the European Space Agencies),” Earth Observation and Rem. Sens., 16 (2000).

    Google Scholar 

  64. G. C. Johnson and J. M. Lyman, “Oceanography: Where’s the Heat?”, Nature. Climate Change, 4 (2014).

    Google Scholar 

  65. G. C. Johnson, J. M. Lyman, and S. G. Purkey, “Informing Deep Argo Array Design Using Argo and Full-depth Hydrographic Section Data,” J. Atmos. Ocean. Technol., 32 (2015).

    Google Scholar 

  66. E. C. Kent and D. I. Berry, “Quantifying Random Measurement Errors in Voluntary Observing Ships’ Meteorological Observations,” Int. J. Climatol., No. 7, 25 (2005).

    Google Scholar 

  67. C. Koblinsky, P. Gaspar, and G. Lagerloef, The Future of Spaceborne Altimetry: Oceans and Climate Change (Joint Oceanographic Institutions Incorporated, Washington, D.C., 1992).

    Google Scholar 

  68. Y. Kuroda, TRITON: Present Status and Future Plan. Report for the International Workshop for Review of the Tropical Moored Buoy Network (JAMSTEC, 2002).

    Google Scholar 

  69. R. Kwok, A. Schweiger, D. A. Rothrock, S. Pang, and C. Kottmeier, “Sea Ice Motion from Satellite Passive Microwave Imagery Assessed with ERS SAR and Buoy Motions,” J. Geophys. Res., No. C4, 103 (1998).

    Google Scholar 

  70. A. K. Liu and D. J. Cavalieri, “On Sea Ice Drift from the Wavelet Analysis of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) Data,” Int. J. Rem. Sens., No. 7, 19 (1998).

    Google Scholar 

  71. G. Love, “The Birth of the WMO Information System,” WMO Bull., No. 4, 55 (2006).

    Google Scholar 

  72. Manual on the Global Telecommunication System: Annex III to the WMO Technical Regulations, WMO-No. 386 (WMO, 2015 ed., updated in 2017).

  73. M. J. Martin, A. Hines, and M. J. Bell, “Data Assimilation in the FOAM Operational Short-range Ocean Forecasting System: A Description of the Scheme and Its Impact,” Quart. J. Roy. Meteorol. Soc., 133 (2007).

    Google Scholar 

  74. N. A. Maximenko, P. P. Niiler, M.-H. Rio, O. Melnichenko, L. Centurion, D. Chambers, V. Zlotnicki, and B. Galperin, “Mean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques,” J. Atmos. Ocean. Technol., 26 (2009).

    Google Scholar 

  75. M. J. McPhaden, A. J. Busalacchi, R. Cheney, J. R. Donguy, K. S. Gage, D. Halpern, M. Ji, P. Julian, G. Meyers, G. T. Mitchum, P. P. Niiler, J. Picaut, R. W. Reynolds, N. Smith, and K. Takeuchi, “The Tropical Ocean-Global Atmosphere (TOGA) Observing System: A Decade of Progress,” J. Geophys. Res., 103 (1998).

    Google Scholar 

  76. M. McPhaden, K. Ando, B. Bourles, H. P. Freitag, R. Lumpkin, Y. Masumoto, V. S. N. Murty, P. Nobre, M. Ravichandran, J. Vialard, D. Vousden, and W. Yu, “The Global Tropical Moored Buoy Array,” in Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).

    Google Scholar 

  77. M. J. McPhaden, G. Meyers, K. Ando, Y. Masumoto, V. S. N. Murty, M. Ravichandran, F. Syamsudin, J. Vialard, L. Yu, and W. Yu, “RAMA: The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction,” Bull. Amer. Meteorol. Soc., 90 (2009).

    Google Scholar 

  78. C. Meinig, S. E. Stalin, A. I. Nakamura, and H. B. Milburn, Real-time Deep-Ocean Tsunami Measuring, Monitoring, and Reporting System: The NOAA DART II Description and Disclosure (NOAA, 2005), http://www.ndbc.noaa.gov/dart/dart_ii_description_6_4_05.pdf.

    Google Scholar 

  79. M. Merrifield, T. Aarup, A. Allen, A. Aman, P. Caldwell, E. Bradshaw, R. M. S. Fernandes, H. Hayashibara, F. Hernandez, B. Kilonsky, B. M. Miguez, G. Mitchum, B. P. Gomez, L. Rickards, D. Rosen, T. Schone, M. Szabados, L. Testut, P. Woodworth, G. W. Appelmann, and J. Zavala, “The Global Sea Level Observing System (GLOSS),” in Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).

    Google Scholar 

  80. P. Muscarella, M. J. Carrier, H. Ngodock, S. Smith, B. L. Lipphardt Jr., A. D. Kirwan Jr., and H. S. Huntley, “Do Assimilated Drifter Velocities Improve Lagrangian Predictability in an Operational Ocean Model?”, Mon. Wea. Rev., 143 (2015).

    Google Scholar 

  81. P. Oke, M. A. Balmaseda, M. Benkiran, J. A. Cummings, E. Dombrowsky, Y. Fujii, S. Guinehut, G. Larnicol, P.-Y. Le Traon, and M. J. Martin, “Observing System Evaluations Using GODAE Systems,” Oceanogr. Mag., No. 3, 22 (2009).

  82. P. R. Oke, G. B. Brassington, D. A. Griffin, and A. Schiller, “The Bluelink Ocean Data Assimilation System (BODAS),” Ocean Model., 21 (2008).

    Google Scholar 

  83. A. Pascual, C. Boone, G. Larnicol, and P. Y. Le Traon, “On the Quality of Real-time Altimeter Gridded Fields: Comparison with in Situ Data,” J. Atmos. Ocean. Tech., 26 (2009).

    Google Scholar 

  84. I. Petiteville, P. Lecomte, S. Ward, G. Dyke, M. Steventon, and J. Harry, Satellite Earth Observation in Support of Climate Information Challenges. Special 2015 COP21 Edition (ESA-EOGB, 2015), http://eohandbook.com/cop21/files/CEOS_EOHB_2015_COP21.pdf.

    Google Scholar 

  85. N. Picot, K. Case, S. Desai, and P. Vincent, AVISO and PODAAC User Handbook. IGDR and GDR Jason Products, SMM-MU-M5-OP-13184-CN (AVISO), JPL D-21352 (PODAAC) (2003).

    Google Scholar 

  86. S. Pouliquen, C. Schmid, A. Wong, M. Belbeoch, and S. Guinehut, “Argo Data Management,” in Proceedings of OceanObs’ 09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).

    Google Scholar 

  87. Report on the Deep Argo Implementation Workshop, Hobart, May 5–7 2015, http://www.argo.ucsd.edu/DAIW1report.pdf.

  88. R. W. Reynolds, T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, “Daily High-resolutionblended Analyses for Sea Surface Temperature,” J. Climate, 20 (2007).

    Google Scholar 

  89. I. S. Robinson, Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography (Springer/Praxis, Berlin, 2004).

    Google Scholar 

  90. D. Roemmich, O. Boebel, Y. Desaubies, H. Freeland, K. Kim, B. King, P.-Y. Le Traon, R. Molinari, W. B. Owens, S. Riser, U. Send, K. Takkeuchi, and S. Wijiffels, “Argo: The Global Array of Profiling Floats,” in Observing the Oceans in the 21st Century, Ed. by C. J. Koblinsky and N. R. Smith (GODAE Project Office and Bureau of Meteorology, Melbourne, 1998).

    Google Scholar 

  91. D. Roemmich, O. Boebel, H. Freeland, B. King, P.-Y. Le Traon, R. Molinari, W. B. Owens, S. Riser, U. Send, K. Takkeuchi, and S. Wijiffels, On the Design and Implementation of Argo: An Initial Plan for a Global Array of Profiling Floats, Int. CLIVAR Project Office Report 21, GODAE Report 5 (GODAE International Project Office, Melbourne, Australia, 1998).

    Google Scholar 

  92. C. Solvsteen and C. Hansen, Validation of the Operational Wave Models WAVEWATCH-III and Mike21-OSW against Satellite Altimetry and Coastal Buoys (Royal Danish Administration of Navigation and Hydrography NR K.4, March 2006).

    Google Scholar 

  93. K. Steffen and A. J. Schweiger, “NASA Team Algorithm for Sea Ice Concentration Retrieval from Defense Meteorological Satellite Program Special Sensor Microwave Imager: Comparison with Landsat Satellite Imagery,” J. Geophys. Res., No. C12, 96 (1991).

    Google Scholar 

  94. V. Swail, R. Jensen, B. Lee, J. Turton, J. Thomas, S. Gulev, and M. Yelland, “Wave Measurements, Needs and Developments for the Next Decade,” in Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).

    Google Scholar 

  95. J. C. Swallow, “A Neutral-buoyancy Float for Measuring Deep Currents,” Deep-Sea Res., 3 (1955).

    Google Scholar 

  96. F. L. Sybrandy, P. P. Niiler, C. Martin, W. Scuba, E. Charpentier, and D. T. Meldrum, Barometer Drifter Design Reference, Global Drifter Program, DBCP Report No. 4, Revision 2.2 (2009), http://www.jcommops.org/doc/DBCP/svpb_design_manual.pdf.

    Google Scholar 

  97. H. L. Tolman, Validation of WAWEWATCH III Version 1.15 for a Global Domain, NOAA/NWS/NCEP/OMB Technical Note No. 213 (2002).

  98. R. Tonboe and L. Toudal, “Classification of New-ice in the Greenland Sea Using Satellite SSM/I Radiometer and SeaWinds Scatterometer Data and Comparison with Ice Model,” Rem. Sens. Environ., 97 (2005).

    Google Scholar 

  99. G. Vernieres, C. K. R. T. Jones, and K. Ide, “Capturing Eddy Shedding in the Gulf of Mexico from Lagrangian Observations,” Physica D: Nonlinear Phenomena, No. 2, 240 (2011).

    Google Scholar 

  100. A. A. Zelenko, Reducing Wind Observations on the High Seas to Standard Levels, CMM-MC-V/DOC 24 (WMO, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zelenko.

Additional information

Original Russian Text © A.A. Zelenko, Yu.D. Resnyanskii, 2018, published in Meteorologiya i Gidrologiya, 2018, No. 12, pp. 5–30.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenko, A.A., Resnyanskii, Y.D. Marine Observational Systems as an Integral Part of Operational Oceanology: A Review. Russ. Meteorol. Hydrol. 43, 797–814 (2018). https://doi.org/10.3103/S1068373918120014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373918120014

Keywords

Navigation