Skip to main content
Log in

Investigation of Interannual Variability and Budget of Heat in an Eddy-resolving Numerical Model of Tropical Instability Waves in the Pacific Ocean

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The characteristics and formation conditions of eddy meridional heat transport (MHT) in the eastern equatorial Pacific are studied using the results of eddy-resolving numerical modeling as compared with observational and reanalysis data. Calculations of the eddy MHT convergence at the equator are performed and realistic results in the analyzed region except for its easternmost part are obtained. The interannual variability and velocity of propagation of tropical instability waves are estimated. The errors of the time-averaged model solution are analyzed, and the assumptions on the mechanisms of their occurrence are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Demyshev and O. A. Dymova, “Calculation and Analysis of Water Circulation Energetics in the Black Sea Coastal Regions,” Morskoi Gidrofizicheskii Zhurnal, No. 3 (2017) [Phys. Oceaongr., No. 3 (2017)].

    Google Scholar 

  2. N. A. Dianskii, A. V. Gusev, and V. V. Fomin, “The Specific Features of Pollution Spread in the Northwest Pacific Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 48 (2012) [Izv., Atmos. Oceanic Phys, No. 2, 48 (2012)].

    Google Scholar 

  3. R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, “Eddy–resolving 1/10° Model of the World Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].

    Google Scholar 

  4. A. B. Polonskii and S. B. Krashennikova, “Variability of the Currents’ Vertical Structure in the Western Subtropical Atlantic and Meridian Heat Transport,” Morskoi Gidrofizicheskii Zhurnal, No. 3 (2015) [Phys. Oceanogr., No. 3 (2015)].

    Google Scholar 

  5. K. A. Rogachev and N. V. Shlyk, “The Role of the Aleutian Eddies in the Kamchatka Current Warming,” Meteorol. Gidrol., No. 1 (2018) [Russ. Meteorol. Hydrol., No. 1, 43 (2018)].

    Google Scholar 

  6. Y. Aksenov, M. Karcher, A. Proshutinsky, R. Gerdes, B. A. de Cuevas, E. Golubeva, F. Kauker, A. Nguyen, G. Platov, M. Wadley, E. Watanabe, A. C. Coward, and G. Nurser, “Arctic Pathways of Pacific Water: Arctic Ocean Model Intercomparison Experiments,” J. Geophys. Res. Oceans, 121 (2016).

  7. J. I. Antonov, D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas 2009, Vol. 2: Salinity, Ed. by S. Levitus, NOAA Atlas NESDIS 69 (U.S. Government Printing Office, Washington, D.C., 2010).

    Google Scholar 

  8. H. L. Bryden and E. C. Brady, “Eddy Momentum and Heat Fluxes and Their Effects on the Circulation of the Equatorial Pacific Ocean,” J. Mar. Res., 47 (1989).

  9. E. de Boisseson, P. Laloyaux, and M. Balmaseda, Capturing Tropical Instability Waves in the ECMWF Coupled Reanalysis System, ERA Report Series (2015).

    Google Scholar 

  10. D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hylm, L. Isaksen, P. Kellberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge–Sanz, J.–J. Morcrette, B.–K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.–N. Thepaut, and F. Vitart, “The ERA–Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., 137 (2011).

  11. T. L. Delworth, A. Rosati, W. Anderson, A. J. Adcroft, V. Balaji, R. Benson, K. Dixon, S. M. Griffies, H.–C. Lee, R. C. Pacanowski, G. A. Vecchi, A. T. Wittenberg, F. Zeng, and R. Zhang, “Simulated Climate and Climate Change in the GFDL CM2.5 High–resolution Coupled Climate Model,” J. Climate, 25 (2012).

  12. R. Gelderloos, C. A. Katsman, and S. S. Drijfhout, “Assessing the Roles of Three Eddy Types in Restratifying the Labrador Sea after Deep Convection,” J. Phys. Oceanogr., 41 (2011).

  13. S. M. Griffies, A. Biastoch, C. Boning, F. Bryan, G. Danabasoglu, E. P. Chassignet, M. E. England, R. Gerdes, H. Haak, R. W. Hallberg, W. Hazeleger, J. Jungclaus, W. G. Large, G. Madec, A. Pirani, B. L. Samuels, M. Scheinert, A. Sen Gupta, C. A. Severijns, H. L. Simmons, A. M. Treguier, M. Winton, S. Yeager, and J. Yin, “Coordinated Ocean–ice Reference Experiments (COREs),” Ocean Modelling, No. 1–2, 26 (2009).

  14. S. M. Griffies, M. Winton, W. G. Anderson, R. Benson, T. L. Delworth, C. O. Dufour, J. P. Dunne, P. Goddard, A. K. Morrison, A. Rosati, A. T. Wittenberg, J. Yin, and R. Zhang, “Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models,” J. Climate, 28 (2015).

  15. D. V. Hansen and C. A. Paul, “Genesis and Effects of Long Waves in the Equatorial Pacific,” J. Geophys. Res., 89 (1984).

  16. S. R. Jayne and J. Marotzke, “The Oceanic Eddy Heat Transport,” J. Phys. Oceanogr., 32 (2002).

  17. V. V. Kalmykov, R. A. Ibrayev, M. N. Kaurkin, and K. V. Ushakov, “Compact Modeling Framework v3.0 for High–resolution Global Ocean–ice–atmosphere Models,” Geosci. Model Develop., No. 10, 11 (2018).

    Google Scholar 

  18. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas 2009, Vol. 1: Temperature, Ed. by S. Levitus, NOAA Atlas NESDIS 68 (U.S. Government Printing Office, Washington, D.C., 2010).

    Google Scholar 

  19. A. J. Meijers, N. L. Bindoff, and J. L. Roberts, “On the Total, Mean, and Eddy Heat and Freshwater Transports in the Southern Hemisphere of a 1.8 x1.8Glob aOl cean Model,” J. Phys. Oceanogr., 37 (2007).

  20. NOAA Climate Prediction Center. Historical El Nino/La Niría Episodes (1950–present), http://origin.cpc.ncep. noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.

  21. N. A. Rayner, D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century,” J. Geophys. Res., No. D14, 108 (2003).

  22. M. J. Roberts, “Impact of an Eddy–permitting Ocean Resolution on Control and Climate Change Simulations with a Global Coupled GCM,” J. Climate, 17 (2004).

  23. M. J. Roberts, A. Clayton, and M. Demory, “Impact of Resolution on the Tropical Pacific Circulation in a Matrix of Coupled Models,” J. Climate, 22 (2009).

  24. T. Shinoda, G. N. Kiladis, and P. E. Roundy, “Statistical Representation of Equatorial Waves and Tropical Instability Waves in the Pacific Ocean,” Atmos. Res., No. 1, 94 (2009).

    Google Scholar 

  25. R. D. Smith, M. E. Maltrud, F. O. Bryan, and M. W. Hecht, “Numerical Simulation of the North Atlantic Ocean at 1/10°,” J. Phys. Oceanogr., 30 (2000).

  26. H. Tatebe and H. Hasumi, “Formation Mechanism of the Pacific Equatorial Thermocline Revealed by a General Circulation Model with a High Accuracy Tracer Advection Scheme,” Ocean Modelling, No. 3, 35 (2010).

    Google Scholar 

  27. K. V. Ushakov and R. A. Ibrayev, “Assessment of Mean World Ocean Meridional Heat Transport Characteristics by a High–resolution Model,” Russ. J. Earth Sci., 18 (2018).

  28. D. L. Volkov, L.–L. Fu, and T. Lee, “Mechanisms of the Meridional Heat Transport in the Southern Ocean,” Ocean Dynamics, 60 (2010).

  29. D. L. Volkov, T. Lee, and L.–L. Fu, “Eddy–induced Meridional Heat Transport in the Ocean,” Geophys. Res. Lett., 35 (2008).

  30. C. S. Willett, R. R. Leben, and M. F. Lavin, “Eddies and Tropical Instability Waves in the Eastern Tropical Pacific: A Review,” Progress in Oceanogr., No. 2–4, 69 (2006).

  31. S. Williams, M. Petersen, M. Hecht, M. Maltrud, J. Patchett, J. Ahrens, and B. Hamann, “Interface Exchange as an Indicator for Eddy Heat Transport,” Computer Graphics Forum, 31 (2012).

  32. S. T. Zalezak, “Fully Multidimensional Flux–corrected Transport Algorithm for Fluids,” J. Com. Phys., 31 (1979).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Ushakov.

Additional information

Original Russian Text © K.V. Ushakov’ R.A. Ibrayev, 2018, published in Meteorologiya i Gidrologiya, 2018, No. 11, pp. 110–120.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, K.V., Ibrayev, R.A. Investigation of Interannual Variability and Budget of Heat in an Eddy-resolving Numerical Model of Tropical Instability Waves in the Pacific Ocean. Russ. Meteorol. Hydrol. 43, 787–794 (2018). https://doi.org/10.3103/S1068373918110109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373918110109

Keywords

Navigation