Skip to main content
Log in

Smoke haze over the European part of Russia in the summer of 2016: A link to wildfires in Siberia and atmospheric circulation anomalies

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The mechanism of smoke haze formation over the European part of Russia (EPR) in the summer of 2016 is analyzed using satellite measurements, ground-based observations, reanalysis data, and trajectory modeling. The analysis reveals that smoke in the atmosphere over EPR with the aerosol optical depth increase up to 3 was caused by the long-range transport of combustion products from Siberian wildfires. The increase in the concentration of smoke aerosol in the atmosphere over EPR was accompanied by the increase in the concentration of carbon monoxide in the air. The long-range atmospheric transport of the products of pyrogenic emission from east to west for a distance up to 5000 km with the speed of 5–6 m/s predominantly occurred in the lower troposphere. The peculiarities of tropospheric circutation over Northern Eurasia in July 2016 are identified which were responsible for the transport of combustion products in the troposphere for thousands of kilometers in the direction opposite to the westerlies that prevail in the mid-latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Golitsyn, G. I. Gorchakov, E. I. Grechko, et al., “Extreme Carbon Monoxide Pollution of the Atmospheric Boundary Layer in Moscow Region in the Summer of 2010,” Dokl. Akad. Nauk, No. 4, 441 (2011) [Dokl. Earth Sci., No. 2, 441 (2011)]

    Google Scholar 

  2. G. I. Gorchakov, P. P. Anikin, A. A. Volokh, et al., “Studies of the Smoky Atmosphere Composition over Moscow during Peatbog Fires in the Summer-Fall Season of 2002,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 40 (2004) [Izv., Atmos. Oceanic Phys., No. 3, 40 (2004)]

    Google Scholar 

  3. G. I. Gorchakov, V. M. Kopeikin, S. A. Sitnov, et al., “Moscow Smoke Haze in October 2014. Variations in the Aerosol Mass Concentration,” Optika Atmosfery i Okeana, No. 10, 28 (2015) [Atmos. Oceanic Optics, No. 1, 29 (2016)]

    Google Scholar 

  4. G. I. Gorchakov, E. G. Semutnikova, A. A. Isakov, et al., “Moscow Smoke Haze of 2010. Extreme Aerosol and Gas Air Pollution in the Moscow Region,” Optika Atmosfery i Okeana, No. 6, 24 (2011) [in Russian].

    Google Scholar 

  5. I. A. Gorchakova and I. I. Mokhov, “The Radiative and Thermal Effects of Smoke Aerosol over the Region of Moscow during the Summer Fires of 2010,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 5, 48 (2012)]

    Google Scholar 

  6. E. L. Kats, The Unusual Summer of 1972 (Gidrometeoizdat, Leningrad, 1973) [in Russian].

    Google Scholar 

  7. I. I. Mokhov, “Specific Features of the 2010 Summer Heat Formation in the European Territory of Russia in the Context of General Climate Changes and Climate Anomalies,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 6, 47 (2011)]

    Google Scholar 

  8. I. I. Mokhov and I. A. Gorchakova, “Radiation and Temperature Effects of Summer Fires in 2002 in the Moscow Region,” Dokl. Akad. Nauk, No. 4, 400 (2005) [Dokl. Earth Sci., No. 1, 400 (2005)].

    Google Scholar 

  9. I. I. Mokhov, A. V. Chernokul'skii, and I. M. Shkol'nik, “Regional Model Assessments of Fire Risks under Global Climate Changes,” Dokl. Akad. Nauk, No. 6, 411 (2006) [Dokl. Earth Sci., No. 9, 411 (2006)]

    Google Scholar 

  10. S. A. Sitnov, “Analysis of Satellite Observations of Aerosol Optical Properties and Trace Gases over the Central Region of the Russian Federation in the Period of Abnormally High Summer Temperature and Widespread Wildfires in 2010,” Optika Atmosfery i Okeana, No. 7, 24 (2011) [in Russian].

    Google Scholar 

  11. S. A. Sitnov, “Aerosol Optical Thickness and the Total Carbon Monoxide Content over the European Russia Territory in the 2010 Summer Period of Mass Fires: Interrelation between the Variation in Pollutants and Meteorological Parameters,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 6, 47 (2011)]

    Google Scholar 

  12. N. E. Chubarova, E. V. Gorbarenko, E. I. Nezval', and O. A. Shilovtseva, “Aerosol and Radiation Characteristics of the Atmosphere during Forest and Peat Fires in 1972, 2002, and 2010 in the Region of Moscow,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 6, 47 (2011)]

    Google Scholar 

  13. N. P. Shakina and A. R. Ivanova, “The Blocking Anticyclones: The State of Studies and Forecasting,” Meteorol. Gidrol., No. 11 (2010) [Russ. Meteorol. Hydrol., No. 11, 35 (2010)]

  14. I. M. Shkol'nik, E. K. Mol'kentin, E. D. Nadezhina, et al., “Temperature Extremes and Wildfires in Siberia in the 21st Century: The MGO Regional Climate Model Simulation,” Meteorol. Gidrol., No. 3 (2008) [Russ. Meteorol. Hydrol., No. 3, 33 (2008)]

  15. J. C. Acker and G. Leptoukh, “Online Analysis Enhances Use of NASA Earth Science Data,” Eos, Trans., AGU, 88 (2007).

  16. H. H. Aumann, M. T. Chahine, C. Gautier, et al., “AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products, and Processing Systems,” IEEE Trans. Geosci. Rem. Sens., 41 (2003).

  17. I. T. Bertschi, D. A. Jaffe, L. Jaegle, et al., “PHOBEA/ITCT 2002 Airborne Observations of Transpacific Transport of Ozone, CO, Volatile Organic Compounds, and Aero sols to the Northeast Pacific: Impacts of Asian Anthropogenic and Siberian Boreal Fire Emissions,” J. Geophys. Res., 109 (2004).

  18. P. Cottle, K. Strawbridge, and I. McKendry, “Long-range Transport of Siberian Wildfire Smoke to British Columbia: Lidar Observations and Air Quality Impacts,” Atmos. Environ., 90 (2014).

  19. R. J. Dirksen, K. Folkert Boersma, J. de Laat, et al., “An Aerosol Boomerang: Rapid Around-the-world Transport of Smoke from the December 2006 Australian Forest Fires Observed from Space,” J. Geophys. Res., 114 (2009).

  20. B. N. Holben, T. F. Eck, I. Slutsker, et al., “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Rem. Sens. Environ., 66 (1998).

  21. D. Jaffe, I. Bertschi, L. Jaegle, et al., “Long-range Transport of Siberian Biomass Burning Emissions and Impact on Surface Ozone in Western North America,” Geophys. Res. Lett., 31 (2004).

  22. C. O. Justice, L. Giglio, S. Korontzi, et al., “The MODIS Fire Products,” Rem. Sens. Environ., 83 (2002).

  23. Y. J. Kaufman, R. G. Kleidman, and M. D. King, “SCAR-B Fires in the Tropics: Properties and Remote Sensing from EOS-MODIS,” J. Geophys. Res., 103 (1998).

  24. R. Kistler, W. Collins, S. Saha, et al., “The NCEP-NCAR 50-year Reanalysis: Monthly Means CD-ROM and Documentation,” Bull. Amer. Meteorol. Soc., 82 (2001).

  25. R. C. Levy, L. A. Remer, S. Mattoo, et al., “Second-generation Operational Algorithm: Retrieval of Aerosol Properties over Land from Inversion of Moderate Resolution Imaging Spectroradiometer Spectral Reflectance,” J. Geophys. Res., 112 (2007).

  26. C. Lund Myhre, C. Toledano, G. Myhre, et al., “Regional Aerosol Optical Properties and Radiative Impact of the Extreme Smoke Event in the European Arctic in Spring 2006,” Atmos. Chem. Phys., 7 (2007).

  27. L. D. Prockop and R. I. Chichkova, “Carbon Monoxide Intoxication: An Updated Review,” J. Neurological Sci., No. 1–2, 262 (2007).

  28. A. F. Stein, R. R. Draxler, G. D. Rolph, et al., “NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System,” Bull. Amer. Meteorol. Soc., 96 (2015).

  29. K. B. Strawbridge, “Developing a Portable, Autonomous Aerosol Backscatter Lidar for Network or Remote Operations,” Atmos. Measur. Tech., 6 (2013).

  30. A. Teakles, R. So, B. Ainslie, et al., “Impacts of the July 2012 Siberian Fire Plume on Air Quality in the Pacific Northwest,” Atmos. Chem. Phys. Discuss. (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sitnov.

Additional information

Original Russian Text © S.A. Sitnov, I.I. Mokhov, G.I. Gorchakov, A.V. Dzhola, 2017, published in Meteorologiya i Gidrologiya, 2017, No. 8, pp. 50–63.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnov, S.A., Mokhov, I.I., Gorchakov, G.I. et al. Smoke haze over the European part of Russia in the summer of 2016: A link to wildfires in Siberia and atmospheric circulation anomalies. Russ. Meteorol. Hydrol. 42, 518–528 (2017). https://doi.org/10.3103/S1068373917080052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373917080052

Keywords

Navigation